
THE DYNAMIC PORT RESERVATION PROTOCOL

BY

ANDREW JOSEPH REITZ

B.S., Case Western Reserve University, 1999

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2001

Urbana, Illinois

Abstract

In the current Internet, Network Address Translation (NAT) gateways that provide

port address translation are quite popular. These gateways allow many hosts to be

multiplexed on one single IP address and still maintain full outbound connectivity.

However, the ability to share a single IP address with many hosts doesn’t come for free

- the NAT denies these hosts the ability to receive unsolicited inbound connections.

The lack of inbound connectivity is fine for a user base that wishes to only surf

the web and check e-mail. However, with the rise of peer-to-peer applications such as

instant messaging, Napster and Internet-enabled games, users are demanding inbound

connectivity at an ever-increasing rate.

Most NAT gateways already provide a method to restore limited inbound con-

nectivity. It is possible to instruct the NAT gateway to forward unsolicited inbound

packets on a specific port to a specific internal host. This is typically hard to configure

and is only available to the administrators of the NAT gateway.

In order to make the port-forwarding solution generally usable, a new network

protocol is needed. The Dynamic Port Reservation Protocol (DPRP) allows end-

users to establish their own port-forwarding rules on the NAT gateway. These port

forwarding rules are not static – rather, they are dynamic. End users are only able

to get a lease on a port, which they may use for a limited period of time, before it

is reclaimed by the NAT gateway. In this manner, the gateway administrator is able

to keep some measure of control over the port-forwarding rules and users are able to

run their peer-to-peer applications with full functionality.

iii

Acknowledgments

I would like to thank a number of people, without whom, this project never would

have reached completion. My thesis advisor, Dr. Robin Kravets, provided me with

invaluable direction with every phase of this project. DPRP would be a hulking,

unpublishable mass if it were not for her keen guidance. Additionally, I would like to

thank Dr. Ralph Johnson, who’s programming techniques helped me keep the DPRP

reference implementation on track.

Several of the friends that I made at the university also played key roles in making

this project happen. Keith Wessel bootstraped me on a lot of the ins-and-outs of

thesis writing at UIUC. His demonstration of the LATEX style files was invaluable in

producing this document in such a timely manner. Kris Wehner also supplied lots

of Java and LATEX help, as well as general encouragement. Fredrik Vraalsen came in

with many clutch pieces of advice, and saved me from tearing out all of my hair when

I couldn’t get an underscore to show up the references.

Finally, I would like to thank my parents, Pat and Randy, for all of their continued

support, including feeding and housing me during the last several months of this

project. I would also like to thank my sisters, Beth and Sara, for their support.

iv

Table of Contents

Chapter

1 Introduction. 1

2 Motivation and Background . 5

2.1 Related Work . 6

2.1.1 Hack for Peer-to-Peer/UDP Applications 6

2.1.2 Realm-Specific IP . 9

2.1.3 AVES . 11

2.2 A New Solution Is Needed . 15

3 DPRP Design and Implementation . 18

3.1 The DPRP Protocol . 18

3.2 Sample DPRP Client/Server Implementation 23

3.2.1 The DPRPMessage class . 24

3.2.2 The DPRPSocket class . 26

3.2.3 The DPRPLease class . 27

3.2.4 The ServerPortManager class 28

3.2.5 The DPRPRestriction class 30

3.2.6 The GUI client . 31

3.3 Building a DPRP Gateway . 33

3.3.1 About Linux/Netfilter . 34

3.3.2 Integrating the Java DPRP Server with Netfilter 36

v

3.3.3 The “Netfilter Problem” . 38

3.4 Embedding DPRP into Napster . 39

4 Evaluation . 42

4.1 Security Implications . 42

4.1.1 The “worm” implication . 43

4.2 Complete end-user transparency is hard 43

5 Conclusion . 45

References . 47

vi

List of Tables

2.1 Description of messages in Figure 2.1.3 13

3.1 DPRPMessage fields and data types 24

3.2 iptables command-line arguments 35

vii

List of Figures

1.1 A simple NAT gateway. Notice that the gateway only modifies the

source IP address of the packet. 2

1.2 A complex NAT gateway, performing port-address translation. Notice

that the gateway modifies the source IP address and port of each the

packet. 3

2.1 Example of the P2P/UDP hack. 7

2.2 Example of Realm-Specific IP. 10

2.3 Example of AVES. 12

3.1 DPRP client state diagram. 20

3.2 DPRP main server state diagram. 21

3.3 DPRP server renew state diagram. 22

3.4 Screen capture of the DPRP GUI client. 32

viii

Chapter 1

Introduction

Network Address Translation (NAT) [1], was developed as a stop-gap measure in

order to extend the life of IPv4 [2] networks in the face of address exhaustion. As the

Internet (the world’s largest IPv4 network) grows, it faces an exhaustion of unique

addresses. Part of this exhaustion is due to inefficiencies in the allocation of addresses

(class-based, broadcast addresses, unusable ”zero network”, multicast). For example,

a Class A network provides approximately 16 million addresses to only one entity.

Furthermore, if the assigned entity doesn’t use all of these addresses, there is no

provision to allocate them to other entities. Consequently, these unused addresses

are considered to be wasted. Some improvements to IPv4 have been made, such as

allowing the ”zero network” (a zero in one of the octets) to be used. Furthermore,

Classless Inter-Domain Routing (CIDR) [3] has been developed in order to ease the

restrictions of the class system, thus increasing address efficiency. However, the rate

of growth of the Internet has surpassed all of these enhancements to IPv4.

In light of these problems, the Internet Engineering Task Force (IETF) has en-

gineerd a successor to IPv4, which they have creatively entitled “IPv6” [4]. This

new protocol provides 128-bit address, which should eliminate IP address exhaustion

concerns for several decades. Unfortunately, the rate of adoption for IPv6 has proven

to be quite slow [5]. Furthermore, since IPv6 is not currently available to the general

1

public, facilities that extend the usefulenesss of IPv4 are still of great interest.

Consequently, a methodology for multiplexing many host computers onto one (or

more) IP addresses was developed. This technique, called NAT, has allowed the useful

life of IPv4 to be greatly extended, by easing the requirement that each host on the

Internet requires a unique IP address. Essentially, this technique employs the use of a

dual-homed device that modifies packets as they travel through it. This modification

usually entails substituting the source IP address for that of a different source IP

address. A mapping is kept, from <original source IP> to <new source IP>, so

that when a return packet comes back with a destination of <new source IP>, the

destination field can be changed to <original source IP>, and sent to the original

source.

NAT Gateway
Int: 10.0.0.1

Ext: 206.221.224.146

Client
IP: 10.0.0.2

Server
IP: 199.177.4.14

SRC: 10.0.0.2
DST: 199.177.4.14

SRC: 206.221.224.146
DST: 199.177.4.14

Figure 1.1: A simple NAT gateway. Notice that the gateway only modifies the
source IP address of the packet.

Variations of this technology allow multiple hosts to share one IP address. This

variation is typically called ”Network Address Port Translation” (NAPT) [6], and

takes advantage of the fact that the majority of Internet workstations only launch

outgoing connections (to fetch a web page, for instance). As such, if you consider

a host to be the <IP address, port> pair, then because there are approximately

65,000 possible ports, it is possible to multiplex many hosts on one IP address. This

has become quite popular in the marketplace, from large organizations all the way

down to small home installations. It is quite common for large organizations to use

private, non-routable IP addresses on their intranet, and to provide a NAT gateway

for Internet access. This increases address efficiency and flexibility, and also promotes

2

security. On the Small Home/Home Office (SOHO) end, the increase in computing

power demanded by Internet applications has not kept up with the increases provided

by Moore’s law [7]. Thus, as people purchase newer computers, their old models are

still viable. The drive to allow all of these computers to share one Internet connection

has made NAT quite prevalent in the home.

NAT Gateway
Int: 10.0.0.1

Ext: 206.221.224.146

Client
IP: 10.0.0.2

Server
IP: 199.177.4.14

SRC: 10.0.0.2:7788
DST: 199.177.4.14:80

SRC: 206.221.224.146:7788
DST: 199.177.4.14:80

Client
IP: 10.0.0.3

SRC: 10.0.0.3:7788
DST: 199.177.4.14:80

SRC: 206.221.224.146:7789
DST: 199.177.4.14:80

Figure 1.2: A complex NAT gateway, performing port-address translation. Notice
that the gateway modifies the source IP address and port of each the packet.

As demonstrated in figure 1.2, NAPT gateways operate by maintaining a trans-

lations table, consisting of an conversion from <internal IP, port> to <external IP,

port>. When the gateway receives a packet from an internal machine, it matches the

IP address and port to all of the entries in the table. If a table entry is found, then

the corresponding <external IP, port> will be substituted in place of the <internal

IP, port>, and the packet will be passed to the external interface. If a translation

entry isn’t found, then a new one will be created by selecting a free <external IP,

port> pair. When an incoming packet is received (on the external interface), the

translation table is again searched, this time on the <external IP, port> side. If an

entry is found, then the destination IP and port are replaced with the <internal IP,

3

port> as specified in the table. However, if no entry is found, then the incoming

packet is discarded – because the gateway has no way to divine where this packet

needs to go1.

NAPT has been implemented everywhere, and it functions quite well for appli-

cations that only establish out-bound connections. However, for applications that

require the use of in-bound connections (i.e. some host on the outside of the NAPT

gateway attempts to establish a connection to an inside host), the NAPT scheme

forms an insurmountable barrier. There can be good reasons for applications wishing

to establish an in-bound connection. The most popular implementation of the FTP

protocol [8], for instance, defines transfers such that the server opens a connection

to the client machine in order to send it a file. However, the need for in-bound

connectivity has really been highlighted by the upward trend of ”peer to peer” (P2P)

applications, such as Napster [9]. These applications typically work by providing a

central index of shared resources. Clients connect to the central index, perform a

search, and find links to data elements on other client machines. In order to fetch

one of these data elements, the searching client attempts to establish a direct connec-

tion to the client that holds the data. Hence, in this architecture, there is no clear

distinction between ”client” and ”server”.

Because the NAPT gateway appears to the world as a single entity, there is no way

for external hosts to address internal hosts directly. Furthermore, because the NAPT

gateway is transparent, there isn’t any way for the internal hosts, once listening

to a port, to notify any outside parties about it’s port. The NAPT gateway isn’t

required to guarantee that ports used by the internal hosts will be the same after

translation. Thus, supporting peer-to-peer applications where both peers are behind

NAPT gateways becomes impossible. It is this problem that this work will attempt

to solve.

1Actually, in some implementations the “lost packet” is consumed by the gateway’s IP stack.

4

Chapter 2

Motivation and Background

Although NAT has a problem of destroying inbound connectivity, we do not want to

replace it as a solution. The addition of NAT1 to IPv4 has given network administra-

tors an amazing amount of flexibility in the way they plan, provision and implement

their networks. Freed from the restrictions of requiring registered IP addresses for

each of their hosts, network administrators can focus on hierarchical organization and

pure network design. Furthermore, on the other side of the spectrum, user’s are free

to configure all of their computers so that they can share a single Internet connection.

Not only is this incredibly convenient, but it also saves time and money.

Additionally, NAT carries with it several nice security properties. Because NAT

obscures multiple physical computers behind one IP address, it is far more difficult

for the outside world to determine the topology and contents of the internal network.

Additionally, because NAT gateways don’t allow unsolicited connections to ports,

security is increased in the face of vulnerabilities of network daemons. Therefore,

sites concerned with security can take a relaxed attitude on their internal network

and only worry about those machines to which in-bound access through the NAT has

been configured.

1In the context of this document, all references to NAT are really references to NAPT. The two

terms are used interchangeably.

5

Because NAT has so many wonderful properties, nobody is seeking to eliminate

it until IPv6 arrives. However, many trends in networked applications are colluding

to make inbound connectivity a higher requirement than ever. For example, many

peer-to-peer applications such as file sharing services, network games and even instant

messaging are insanely popular, with hundreds of millions of users world-wide. It is

important to address the lack of inbound connectivity that NAT affords. Summarized

below are several other efforts made at resolving this problem.

2.1 Related Work

The problem of non-existent in-bound connectivity has existed since NAT was in-

vented. However, with the rise in peer-to-peer applications, this problem has come

under more scrutiny. As such, several other projects have been started in order to

deal with NAT in-bound connectivity problems. What follows is an analysis of three

of the most popular projects.

2.1.1 Hack for Peer-to-Peer/UDP Applications

Dan Kegel has described a potential solution, which he calls “NAT and Peer-to-peer

networking” [10]. In this scenario, we assume that the hosts that wish to establish

a connection already have open connections to a single server (just as a master P2P

server, or a gaming server). Through this connection, each host can relay information

to any other host. So, for two hosts that are both stuck behind NAT gateways, they

can exchange connection-setup information with each other through the common

server link. In this scheme, this information will consist of each host’s NAT gateway

IP address, and a UDP port. Once this information has been exchanged, the hosts

will each attempt to build outgoing connections to each other, using the local port

that they sent, and connecting to the port number that they received. This will cause

6

each NAT gateway to build a translation <external IP1, port1> to <external IP2,

port2>. Hence, because this translation will be installed in each gateway, the two

hosts will be able to communicate directly.

Internet

Bob: 209.100.100.13:2220

TCP:2220TCP: 6500

Jane: 199.177.4.14:6500

IP Address: 128.174.244.122:8888

P2P Server

IP Address: 192.168.1.1

External IP: 199.177.4.14
Internal IP: 192.168.1.1
External IP: 209.100.100.13

Bob’s PC

Internal IP: 10.0.0.1

IP Address: 10.0.0.2

Jane’s PC

UDP: 10.0.0.2:6501 −> 209.100.100.13:2221 UDP: 199.177.4.14:6501 −> 192.168.1.2:2221

UDP: 199.177.4.14:6501 −> 209.100.100.13:2221

��

NAT GatewayNAT Gateway

Figure 2.1: Example of the P2P/UDP hack.

Figure 2.1.1 depicts an example of Dan Kegel’s methodology in action. In this

scenario, Jane and Bob wish to play a network game. Both Jane and Bob start the

game on their respective computers, and the game automatically logs them in to the

common gaming server. Using this server, Jane and Bob are able to start a network

game. In doing so, the gaming server gives what it thinks is Bob’s IP address and

port to Jane’s PC, and vice-versa for Jane’s IP information to Bob’s PC. With this

information established, both Jane’s and Bob’s PCs start attempting to connect to

one another with UDP packets. These packets cause each person’s respective NAT

gateways to “open a hole”, that permits the other’s packets to come in through the

network. In this manner, the UDP connection is established, and the gaming session

7

may commence.

The positive aspects of this idea are that it requires a minimal amount of changes

to existing infrastructure. No changes need to be made to existing IP stacks, routers,

or to compatible NAT gateways. Only software applications require modification,

in order to attempt to build the UDP connection simultaneously from both peers.

Furthermore, since the implementation rests solely in the application, it is easy to

deploy. For example, two different games already implement this technique: ”Civi-

lization: Call To Power” and ”Heavy Gear 2”.

There are several aspects of this idea that render it insufficient. The first is

that it only works for applications that use some sort of ”common server”, in order to

exchange the remote IP and port information. Without this ”meta channel”, this idea

simply won’t work. Furthermore, this scheme requires a compatible NAT gateway.

By compatible, all of the NAT gateways must ensure that they will only translate IP

addresses, but not UDP ports. However, in the case of two internal hosts attempting

to use the same UDP port (to the same remote host), one UDP port will have to be

translated, and the system breaks down. The software will have to work around this,

by choosing random ports. Furthermore, some NAT implementations simply don’t

choose the same port for the internal and external sides of the translation. These

NATs are completely incompatible with this protocol, and must be modified in order

to not arbitrarily exchange port numbers.

Finally, this idea only works with the UDP protocol [11]. Because UDP is a con-

nectionless protocol, the NAT has to work optimistically, and assume that any UDP

packet sent is the start of a connection. Thus, the NAT can be spoofed into thinking

that a new connection is being created with the above method. However, TCP is

connection-oriented [12], and as such, it has a definite connection setup procedure.

This procedure consists of a three-way handshake between the two hosts. As a part

of this handshake, each host encodes a random “sequence number” in each of it’s

8

packets. When replying, the hosts send their partner’s sequence number back, incre-

mented. Thus, the NAT gateway can inspect these TCP connection setup packets,

and only allow the packets in the proper sequence through the gateway. Since it is

highly unlikely that the two hosts will randomly choose compatible sequence numbers,

the only way to make this work would be to use a raw socket, and for the application

to implement it’s own TCP protocol. Obviously, this is highly undesirable, and for

all intents and purposes, this method is relegated to use with UDP.

2.1.2 Realm-Specific IP

Realm-Specific IP (RSIP) [13] is a new IP technology that is currently being developed

by the IETF. Essentially, RSIP allows hosts with private IP addresses s to get a ”lease”

on a valid public IP from the NAT gateway. The host then builds packets using the

valid public address, and ships them off to the gateway via a tunnel. The gateway

then de-encapsulates these packets, and sends them out its public interface. Return

packets are intercepted by the NAT gateway, and are again tunneled back to the

private host.

Figure 2.1.2 provides an example of one way that the RSIP protocol can be em-

ployed. In this example, Bob wants to connect to Jane’s PC for some friendly video-

conferencing. In order for this to happen, Jane must first acquire an external IP

address from the RSIP-enabled NAT gateway. Next, Jane must establish an IP tun-

nel between her PC and the RSIP-enabled NAT gateway. At this point, Jane is ready

to advertise her IP address to Bob. Eager to start his video-conference, Bob directs

his PC to connect to the IP address that Jane gave him – 199.177.4.15. But the NAT

gateway is actually listening on this address, so it intercepts all of Bob’s packets.

Determining that these packets belong to a valid RSIP lease, the NAT gateway will

then place them into the tunnel, destined for Jane’s PC. When Jane formulates her

reply, her packets to Bob will be first encapsulated in the tunnel, and then forwarded

9

Internet

acquires lease on
external IP address

199.177.4.15

RSIP connection:

IP Address: 10.0.0.2

Internal IP: 10.0.0.1
External IP: 199.177.4.14

Jane’s PC

T
U

N
N

E
L

IP Packet
Src: 209.100.100.14
Dst: 199.177.4.15

Dst: 209.100.100.14
Src: 199.177.4.15
IP Packet

RSIP external addr. pool: 199.177.4.15−34

Bob’s PC
IP Address: 209.100.100.14

��

RSIP−enabled NAT Gateway

Figure 2.2: Example of Realm-Specific IP.

on to Bob by the NAT gateway.

All told, RSIP is a complete solution to the problem of establishing full bidirec-

tional connectivity between differing IP domains. As such, RSIP is the only solution

that allows things like IPsec [14] to work with full functionality. IPsec is difficult to

support with NAT gateways because as a protocol, it is quite sensitive to modifica-

tions to packets once they have been created. NAT, by its very definition, modifies

packets as they traverse through the gateway. The primary drawback of RSIP is that

it requires extensive modifications to existing infrastructure. Not only must the NAT

gateways be modified, but the IP stacks on all hosts that wish to obtain RSIP leases

particular must be modified as well. For any scheme that requires modifications to

the IP stack on host machines, a slow adoption rate must be expected. The majority

of the Internet-connected hosts run proprietary operating systems; and vendors are

notoriously slow at upgrading their IP stacks to support new technology. Thus, the

10

extent of these modifications means that the rate of adoption for RSIP will be quite

slow.

2.1.3 AVES

The Address Virtualization Enabling Service (AVES) [15] is a scheme for providing

“complete” in-bound connectivity to private hosts. The authors have striven to create

a system that supports any arbitrary service, hence their usage of the word “com-

plete”. AVES has been shown to support applications such as FTP, telnet, SSH,

and even the X Window system. The only applications that encounter difficulties

with AVES are those that are not “NAT-friendly” [16], such as IPsec. Essentially,

this system works by assigning a DNS [17] name in a special domain to each private

host that wants in-bound connectivity. When the DNS server for the special domain

receives a lookup request for an AVES name, the DNS server contacts the waypoint

(a sort of proxy). This initial contact marks the beginning of an AVES session. The

waypoint chooses a valid public IP address (from a pool), and returns this address

to the DNS server. The DNS server then returns this IP address to the requester.

So, now a dynamic binding, or session, has been established for the private host – it

has a valid public IP that it can use to service incoming requests. This session will

remain valid until the waypoint times it out.

The functionality provided by the waypoint is more than just the binding of DNS

names to public IP addresses. Because AVES is transparent to existing IP hosts, the

waypoint must be used in order to maintain this illusion. The initiator of the session

is the host that performed the initial DNS lookup. Since it was given a public IP

address that the waypoint controls, it will send all of it’s packets to the waypoint

directly. Thus, the waypoint must encapsulate these packets, and route them to the

NAT gateway of the corresponding private host. This gateway will de-encapsulate

the packet from the NAT gateway, and forward the initiator’s packet to the private

11

host. The private host can then respond to the initiator directly.

IP Address: 10.0.0.2

DNS Server
129.22.4.3

Jane’s PC
TUNNELIP Address: 199.177.5.21

AVES Waypoint AVES−enabled
NAT Gateway

Pool: 199.177.5.22 − 25

Internal IP: 10.0.0.1
External IP: 199.177.4.14

Bob’s PC
IP Address: 209.100.100.14

PRIVATE NETWORK
INTERNET

1

2 3

4

5

6

7

8

��

Figure 2.3: Example of AVES.

Figure 2.1.3 and table 2.1 conspire to provide an example of AVES in action.

In this example, Bob wishes to establish a TCP connection with Jane. To do this,

Jane tells Bob her computer’s AVES-based address “jane.aves.org”. Subsequently,

Bob directs his PC to this address, in order to establish the connection. Figure 2.1.3

gives an overview of the messages that are either sent or mangled in order to establish

Bob’s TCP connection. Table 2.1 provides the details concerning the contents of each

message.

The advantages of this scheme are that it supports a wide range of applications, not

just peer-to-peer. Furthermore, it can even be used to setup static servers on private

hosts (such as SSH or WWW). Also, this idea doesn’t require any modifications to

Internet hosts, which eases the deployment burden. In fact, AVES only mandates

changes to DNS servers and NAT gateways, for domains that wish to provide public

services from behind the NAT. So, those changes, coupled with the deployment of

12

Message: Description:
1 Bob’s PC makes a DNS query: “Who is jane.aves.org?”
2 The DNS server starts session with Waypoint, asking it to assign an IP

address to ’jane.aves.org’.
3 The assignment is successful, and the Waypoint sends the reserved IP

address, ’199.177.5.23’, to the DNS server.
4 The DNS server replies authoritatively that ’jane.aves.org’ resolves to

’199.177.5.23’, but that this information should not be cached.
5 Bob’s PC starts its TCP session with Jane, by sending a packet to

’199.177.5.23’, which is controlled by the Waypoint server.
6 The Waypoint changes the destination address of Bob’s TCP packet to

’10.0.0.2’, the private IP address of Jane’s PC. It then encapsulates this
packet into a new IP packet, with a source address of ’199.177.5.21’
(the Waypoint) and a destination address of ’199.177.4.14’ (the NAT
gateway).

1 The AVES-enabled NAT gateway de-encapsulates the Waypoint’s packet,
and places Bob’s TCP packet on the wire, bound for Jane’s PC.

8 Jane’s PC formulates a response, which it sends directly to Bob’s PC
(via the NAT gateway).

Table 2.1: Description of messages in Figure 2.1.3

waypoint servers, means that AVES can be rolled out into the Internet at large in a

progressive, as-need fashion.

There are many disadvantages to the AVES system, however. The primary dis-

advantage is that AVES requires public IP addresses that are separate from those

assigned to the NAT gateway. In the worst case, AVES can require a one-to-one

mapping between private hosts and public IP addresses. This can occur when every

host behind the NAT gateway has an entry in the AVES-aware DNS, and is handing

an in-bound connection. At this point, every purpose of using a NAT gateway has

been utterly defeated. The NAT gateway is no longer concealing any hosts (they

all have DNS entries in the AVES-aware DNS server), nor is it conserving any IP

addresses. Conceding that this “worst-case” scenario may be rare, AVES does move

against the grain of NAT. The entire reason for developing NAT was use IP addresses

more efficiently. AVES weakens the efficiency gained by NAT, and thus it is somewhat

opposed to the main driving forces of NAT.

13

The fact that AVES requires modified DNS servers poses several problems. The

first of which is that the DNS requirement implies a high administrative overhead.

Instead of just registering public hosts, now the DNS administrators will also have

to administer private hosts (which were once immune from consideration in the DNS

tables). Furthermore, the DNS administrators must be aware of all of the NAT

gateways in an organization, because these gateways must be added to the DNS

configuration. Furthermore, the AVES-specific modifications currently aren’t a part

of the main Bind [18] distribution. As such, whenever a new release of bind is made

(in order to fix a security hole or add a new feature), the site administrator will have

a more complex time upgrading, because the AVES code must be rolled into the new

release. Finally, even though AVES-specific DNS names are set to be “un-cacheable”,

non-compliant applications (such as web browsers) will cache these names. Thus,

even though AVES purports to be transparent, there could be problems with some

applications, due to their non-compliance with standard DNS protocols. Finally,

tying DNS records to private hosts and NAT gateways is problematic when dynamic

addressing is used. Dynamic DNS extensions can be used to ease the pain for private

hosts that are assigned dynamic addresses, but this increases complexity, and also has

security implications. And AVES contains extensions for NAT gateways that receive

dynamic addresses (such as a SOHO router for DSL or Cable Modem). However, this

all implies added complexity that is required in order to make the system work.

The last major disadvantage of AVES occurs when the private AVES hosts are

sitting behind a router that performs ingress filtering [19]. Ingress filtering is a tech-

nique where packets that have a forged source address are dropped by appropriately-

configured routers. This sort of filtering has been on the rise, because it is effective

at quelling most Denial-of-Service [19] attacks at the source. As defined, AVES will

send return packets directly from the NAT gateway. However, if this were a real IP

connection, the packets should appear to be coming from the waypoint. Thus, ingress

14

filtering will knock these forged packets out of the network, and the reverse path from

the private host to the initiator will be quelled. In order to work around this, the

authors (correctly) suggest that the return traffic will have to be tunneled through

the waypoint server. This is a costly scenario, in terms of performance and waypoint

scalability. Furthermore, this scenario has disastrous implications in the peer-to-peer

space, because not only does it destroy the scalability of the peer-to-peer environ-

ment, but it also raises legal concerns because the peer’s traffic is passing through a

third party’s waypoint servers. Thus, this is really a show-stopper for AVES. It all

depends on how much ingress filtering is growing within the Internet as a whole.

2.2 A New Solution Is Needed

In this existing body of work, no one method achieves the ideal balance between

connectivity and deployability. There is still room for improvement. In this proposal,

a new method for addressing the inbound connectivity problems of NAT will be

presented. Currently, most NAT gateways provide a facility where an administrator

can allocate specific ports, and make those ports ”passthru” to specific private hosts.

For example, the administrator could say that all traffic bound for TCP port 80 on

the gateway should be translated and forwarded to a specific internal host. That host

will service any requests and send the resultant data back through the NAT, for the

usual packet mangling. This technique works well, in that it allows NAT-unfriendly

applications to work through a NAT. The only downside is that it requires explicit

administrator intervention and management for each host in the private network.

The approach described herein applies DHCP-like [20] leasing techniques to this

scenario, via the Dynamic Port Reservation Protocol (DPRP). When an application

decides that it needs in-bound connectivity from the outside world, it can send a

”protocol port request” message to the NAT gateway. The gateway will examine

15

it’s internal translation tables and satisfy the request with an appropriate port. For

example, if a private host wanted to run a web server, it would contact the NAT

gateway and request TCP port 80. If unallocated, the NAT gateway would set up

a translation for TCP port 80 and pass all traffic through to the private host that

requested it. However, this translation won’t be static – it will be leased. So, the

requestor will have this translation for some period of time (say 24 hours), at which

point he/she will have to renew the lease. This is the ”DHCP leasing scheme”.

DPRP carries other DHCP-like features with it, such as reliability in the face of NAT

gateway and client failures (on the NAT gateway, the leases will be logged to some

stable storage).

There are two different methods of utilizing this protocol in order to obtain an

outside port. The first method entails creating a simple client application that an end-

user can use in order to request a port. Since a vanilla web server doesn’t understand

anything about DPRP, the user could run the client, get a port and then configure

that port into the web server. The application would continue to run, updating the

lease as necessary. This solution would provide support for legacy applications.

Additionally, because there is an actual protocol in place, ”smart” applications

could be developed. These applications would handle outside port allocation without

explicit action on the part of the end-user. The vast majority of NAT users (Cable

Modem/DSL users sharing a connection, etc.) are only going to run certain types

of applications that require in-bound access (primarily peer-to-peer applications like

Napster and games). These niche applications could write code that detects if they are

running behind a NAT (this infrastructure is already in place for most applications),

and if so, attempt to register a port with the NAT gateway.

16

It’s important to note that the functionality of the NAT gateway is not changing

at all. Instead, another feature is being added – that of ”dynamic/static port assign-

ment” for private hosts. Everything else about the NAT (the way it mangles packets,

manages its translation table, etc) will remain the same.

17

Chapter 3

DPRP Design and Implementation

3.1 The DPRP Protocol

The design of the Dynamic Port Reservation Protocol (DPRP) was driven by the

twin factors of simplicity and robustness. The protocol needed to be simple (so that

the corresponding implementations of it would be easy to create) and have a low

operating impact. By it’s very nature, DPRP is a protocol that is going to have to be

added “after the fact” to a variety of devices. On the client side, DPRP is positioned

to end up in a range of applications from running on fully-fledged PCs to instant

messaging applications running on cellular phones. On the server side, DPRP will

see implementations in everything from classic UNIX-based routers, to proprietary

hardware routers, to small SOHO routers. Therefore, DPRP as a protocol, must be

structured so that it is easily implemented on a wide range of networked computing

devices.

In terms of robustness, DPRP must be able to operate properly in network envi-

ronments that experience packet loss and latency, and also in the face of client and

server failures. Further, it must be robust enough to handle resource exhaustion,

non-conformant client and server implementations and malicious users. It should

even be feasible to separate the DPRP server and NAT gateway functionality be-

18

tween two separate hosts, and still maintain the necessary robustness properties. In

short, DPRP should be capable of running in a variety of environments and under a

variety of conditions. DPRP should run wherever and whenever it is needed to solve

NAT connectivity problems.

Basing DPRP on the UDP/IP protocol is the correct choice in order to keep the

protocol simple. The UDP protocol is the easiest of the TCP/IP suite to implement,

and as such will be available on the maximum number of devices. All of the packet

exchanges in DPRP will be small in number – the longest conversation between

a client and server is 4 packets. Consequently, it isn’t complex to make these short

exchanges work in the face of UDP’s unreliability The other alternative, TCP, imposes

too high an overhead for such short packet exchanges.

In order to ensure that DPRP carries a low code overhead, much attention was

paid to how the data fields were placed into the DPRP packet. The two design

choices were: to use a compact, packed byte representation or to use an ASCII text-

based format, similar to the format employed by the HTTP protocol [21]. Text-based

protocols, however, require a text parsing engine, which carries significant code space

and complexity costs with it. Also, text-based protocols provide a degree of flexibility

that would have gone to waste in the DPRP space. So, a packed format of fixed-

length was crafted to serve as the cornerstone of the DPRP protocol. Fixed-length,

byte packed messages are simple to decode because they do not require dynamically

allocated memory or complex parsers. Furthermore, the elements are all packed in

network byte order, and are thus immune to endianness translations. That makes this

design as compatible as possible with the widest range of network-capable devices.

With the above factors in mind, the DPRP client was largely designed through

a state diagram. Figure 3.1 shows the state diagram that was used to guide the

reference implementation. Since a DHCP client has a similar form of functionality

to the DPRP client, the same structure was adopted. The REQUEST, OFFER,

19

TIMEOUT
REQUESTING

ACCEPTINGOFFERNACK
OFFER

RENEWING

TERMINATE
LEASE

LEASE
REMOVEDTIMEOUT

BOUND

ACK received /
Delete lease

Renew ACK received /
Reset T1 and T2

Send client NACK /
Don’t accep toffer

T1 expires / Send
client renew

Send ACK /
Conditionally accept

Timeout for
server reply

Timeout for
server reply

RENEWING

INIT REQUESTING

Error received

Send CLI_REQUEST Re−send CLI_REQUEST

T1 expires / Send
client renew

Receive SRV_OFFERReceive server

Timeout for

ACK

server reply
Send TERMINATE

NACK received
or T2 expired

Accept ACK received /
Record lease; set T1

and T2

Figure 3.1: DPRP client state diagram.

ACCEPT, RENEW, and BOUND states were all inspired by DHCP. The nature of

the DPRP lease request phase permits the client a measure of flexibility, while still

guaranteeing that the process will complete in the face of network errors. With the

ability to NACK an offer, clients can negotiate with servers in order to determine

the set of parameters that appeases both sides. Also, response timeouts and packet

retransmissions are built into every stage of the protocol, for correctness in the face

of network errors.

The most important element of the DPRP server’s design is the guarantees it

makes before a lease is committed. It is imperative that the server only commits

a lease when it is guaranteed that the client is in the correct state. As figure 3.2

demonstrates, the server will only commit a lease when it has received a proper “OF-

FER ACK” message from the client. This commit operation isn’t really permanent,

however, until the server is assured that the client has received its “COMMIT ACK”.

20

INIT

REQUEST
RECEIVED

ATTEMPT
ANY PORT

PORT
RESERVED

OFFER
COND.

ACCEPTED

PORT
RESERVE

FAIL

OFFER
FINAL ACK

OFFER
COMMITTED

OFFER
SENT

ATTEMPT
SENT

ERROR
GIVEN PORT

OFFER
REFUSED

REFUSAL
ACK’D

retransmit.

Send ACK

Receive NACK /
return offered

port to free pool

Send final
ACK to client

No port
given

reserved
Specific port

Client ACK
received

Commit offer
to disk

Recv. new
port req.

Send port offer

Send error
to client

Unable to
reserve specific

port
Specific port

given
Some port
reserved

Timeout / resend

Error resv.
port

Wait until
timeout, if
no dup. cli.

ACK received,
then halt. Else,

Figure 3.2: DPRP main server state diagram.

If this final ACK cannot be processed, then the lease is immediately destroyed and

the port returned to the gateway. Additionally, the server’s ACK handling is explic-

itly designed to function correctly in the face of lost packets. Whenever the server

sends a final ACK packet, it waits for a specific timeout period. If no further packets

are received from the client, then the server assumes that the transaction completed

successfully. If, however, the server receives a duplicate of the last packet in the

session, it assumes that the ACK packet was lost, resends it, and resets it’s timeout

counter. In this way, the DPRP server has a guarantee that it can correctly identify

and handle network problems.

The renew transaction is guided by the T1 and T2 timers. DHCP was the inspi-

ration for this process. The T1 timer is initially set to be half of the lease duration.

The T2 timer is initially set to be 7
8

of the lease duration. When T1 expires, the

DPRP client attempts to renew the lease. As figure 3.3 shows, it is possible that the

21

INIT

receiving duplicate
renew request /

Increment
numRenews

Renew request
allowed

Receive renew
request

Check renew
ruleset

Renew request
fails

request recv.
Duplicate renew

Send renew
NACK /

Remove lease

Send renew ok

UNKNOWN
LEASE

END OF
LEASE

CHECKING
RENEW

REQUEST

RENEW
REQUEST

OKAY

RENEW
REQUEST

FAILED

RENEW
FINALIZED

FINALIZE
RENEW

REQUEST

RENEW
RECEIVED

Unknown
Lease

Send renew
NACK

Timeout without

Figure 3.3: DPRP server renew state diagram.

server will explicitly reject the client’s lease renew request. If this happens, the client

is mandated to immediately terminate the lease and inform the user. However, if the

renewal attempt fails without getting an explicit “lease revoked” message from the

server, then the client will wait for renewTimeout = 1
2
∗ (T2−T1) seconds. Once the

renewTimeout timer expires, the client will attempt to renew the lease again. If the

renew attempt is still unsuccessful, renewTimeout will be divided by half, and the

client will wait again. The client will continue this process until either T2 expires,

the lease duration is exceeded, or the lease is successfully renewed. If the client is

unable to renew the lease, it will be expunged, and the user will be notified.

Finally, the implicit design of both the client and server is that unreliable error

messages should be sent whenever possible. For example, if the client receives the

wrong message at the wrong time, an error should be generated. Or, if a server is

unable to decode a received message properly, an error should be sent to the source of

22

the message. These error messages not only aid the client and server in recovery from

failed transactions, but also provide useful feedback to both users and administrators.

3.2 Sample DPRP Client/Server Implementation

Although a design for DPRP was in place, no protocol truly exists until it has been

implemented in code. Code is the most effective means for determining if a protocol

specification is complete and correct. Further, in order to determine the ultimate

viability of DPRP, it needed to be enacted on a live NAT gateway. For reference im-

plementation purposes, it is important to get something working rapidly and portably.

Since this is only a reference implementation, sacrifices of speed and compilability are

forgivable. To that end, Sun’s Java [22] language was chosen for the implementation

of both the DPRP client and server. Further aid was afforded by Jason Goldschmidt

and Nick Stone’s JDHCP [23], a sample DHCP implementation also written in Java.

This project inspired several key pieces of the DPRP implementation, including how

to create UDP network packets from Java objects, a “smart socket” that understood

DPRP message objects.

The sample DPRP implementation started simply, and grew with every feature

added, into several fully-fledged applications. The code was refactored and reorga-

nized several times, as new functionality was added. Furthermore, after each change,

the code was extensively tested. A feature wasn’t decreed to be “complete” until it

was tested and found to be working properly. This iterative process kept the project

manageable at all times. Additionally, extensive use was made of Sun’s javadoc

facilities, to document all of the DPRP classes and methods. Not only did explain-

ing the code help to find problems, but it also made the code more accessible and

understandable to others.

23

DPRP Data Field Java Datatype
messageType byte

protocol byte

flags short

xid int

duration int

srcAddr InetAddress

srcPort int

dstAddr InetAddress

dstPort int

extAddr InetAddress

extPort int
Table 3.1: DPRPMessage fields and data types

3.2.1 The DPRPMessage class

The first major class to be written was the DPRPMessage class, which represents an

individual DPRP datagram. JDHCP demonstrated that the packets that constituted

DPRP are ultimately the most essential class in any implementation. The major

components of this class are the instance variables, which detail each field in the

protocol. Table 3.1 highlights these fields (as named in the DPRPMessage class) and

specifies their corresponding Java datatypes.

The second major component of DPRPMessage is that it contains all of the code

that serializes and deserializes a DPRPMessage object instance. Serialization is the

process of converting all of the object’s data elements into a single byte stream,

suitable for sending on the network. Deserialization is the accompanying process of

converting a byte stream back into an object instance. These methods became part

of the basic DPRPMessage based upon influence from JDHCP. This location suited

the DPRP code base well, although the choice of datatype for IP addresses posed

several unforeseen programming complexities.

Java’s java.net.InetAddress class is the language’s way of representing an In-

ternet address. InetAddress is a powerful IP address object that supports name

resolution, object equality and is compatible with Java’s socket API. Unfortunately,

24

InetAddress also has several important limitations that unnecessarily increased the

complexity of the DPRPMessage serialization code. The primary limitation of the

InetAddress class is that, although it is possible to convert the address into a signed

byte array (suitable for serialization), there is no way to instantiate an InetAddress

from a signed byte array (as needed for deserialization). The four unsigned bytes are

first converted into a dotted-quad string representation of the IP address, at which

point the proper InetAddress object could be instantiated. This presented another

problem: Java has only signed datatypes. Thus, the individual bytes could not be

converted into strings directly – they each had to be converted to the unsigned repre-

sentations, and then stored into an integer. From this integer, each value could then

be converted to the proper string representation.

The only other major problem with the DPRPMessage class came with the attempt

to overload the equals() method from class Object. This method must be overloaded

so that DPRPMessage instances can be stored properly in a variety of hashing data

structures. In the first attempt, a method with the following prototype was created:

public boolean equals (DPRPMessage cmp)

But even with this method, the hashing data structures were still functioning improp-

erly. After debugging, it was determined that the DPRPMessage.equals() method

was never being called. Further exploration discovered that hashing data structures

were calling a method of the following prototype:

public boolean equals (Object o)

This is because the hashing data structures can accept any object, and then have

to cast-down to the most basic object type. The above method was added to

DPRPMessage, so that upon invocation, it checks to make sure that the parameter is

really of type DPRPMessage, in which case, it simply calls the first equals() method

that was written. With this bug out of the way, DPRPMessage was largely complete,

and it was time to start putting DPRPMessage objects on the network.

25

3.2.2 The DPRPSocket class

Some sort of structured facility based upon UDP sockets was needed so that the

DPRP client and server could exchange messages. In JDHCP, a layer of code was

placed above the raw datagram sockets so that DHCPMessage objects could easily

be sent and received. This layer of code consisted of a class named DHCPSocket,

and contained send() and receive() methods. The send() method serializes the

given DHCPMessage object and places the resulting byte stream into the underlying

datagram socket. Similarly, the receive() method extracts a byte stream from the

datagram socket, which is de-serialized into a DHCPMessage object instance, and then

returned. This architecture was a natural fit for DPRP, so the DHCPSocket class was

adapted to become the DPRPSocket class.

This conversion was fairly straight-forward, with the exception of some problems

encountered in the receive() method. The DPRP code mandated changes to the

timeout structure, so that receive() would block both on the underlying socket and

also in the face of an error. This gave an added calling consistency (since receive()

naturally consumed socket errors) to the overlying code. A sendError() method,

was also added so that senders could be notified of error conditions.

With a functioning DPRPSocket in place, the path was cleared to create the

first DPRPClient and SimpleDPRPServer classes. In order to start passing real

DPRPMessages on the network, the initial DPRP client simply sent a DPRP CLI REQUEST

request message, and the corresponding server simply sent the same packet back.

Refactoring further, the client grew until it implemented the entire “client request”

portion of the client state diagram, as depicted in figure 3.1. But as this implementa-

tion progressed, it become evident that some sort of object was going to be necessary

in order to track all of the elements of a DPRP lease. Thus, the DPRPLease class was

born.

26

3.2.3 The DPRPLease class

The DPRPLease class is where both the DPRP client and server store all of the vari-

ables that make up a “lease”. In the DPRP sense, a lease object needs to consist of

several private variables comprising the external IP address and port on the gateway,

as well as duration, protocol, flags and the starting time for this lease. Furthermore,

from analysis of DHCP, it became apparent that these lease objects needed some

sort of unique identifier. Drawing upon the field of database systems, the “unique

identifier” called for is what is known as a primary key [24]. By giving each lease a

primary key, certain properties would become easy to enforce system-wide. For ex-

ample, the DPRP server would be able to verify that it didn’t accidentally issue two

leases for the same resource. The correct primary key for DPRPLease objects is the

conjunction of the external IP address, the external port, and the protocol, separated

by colons. This text string is guaranteed to be unique in the space of valid DPRP

port reservations.

The final dimension of the DPRPLease class is the ability to serialize each object

into a text string. Part of the DHCP server specification is a mandate that the

server store its offered leases on some sort of stable storage. Then, in the event of

server failure, a new server instance will be able to track the same state that the

previous instance tracked. Since a DPRP server provides functionality that is similar

in spirit to that of a DHCP server, it should also store its leases on stable storage.

Some facility was needed for the server to write all of its leases out to disk. To this

end, a method named toString() was created. This method prints out a lease in a

computer-parsable format, suitable for an on-disk database of leases. The format is

as follows:

extIP:extPort:protocol|cliIP:cliPort|srvIP:srvPort|startTime| \

duration|flags|numRenews

In order to restore DPRPLease objects from disk, an analog for the toString() method

27

is needed. To that end, the fromString() method was created. This method instan-

tiates a new DPRPLease object, based upon the data values that are found in the lease

string. Additional routines sat above these methods, writing all of the leases out to

disk, and also reading them all back in. With all of this infrastructure in place, it was

time decide with how the DPRP server would actually manage these lease objects.

3.2.4 The ServerPortManager class

As a service, a DPRP server must be designed so that it can handle many concurrent

client requests for external ports. Each port request must be able to operate without

infringing upon the activities of any other request. This requirement brings a strong

influence upon the design of the server’s internal data structures. In particular,

special care must be paid to the server component that tracks outstanding leases.

A centralized component is needed to serve as an arbiter between these requests.

Further, because each request must ask a series of questions, it is natural to think of

this arbiter as an object that can be queried. Thus, the ServerPortManager class

was created. In particular, this class was designed to be a singleton that runs in the

server’s address space, and is able to answer questions of the following form:

1. Is this client allowed to request a lease?

2. Is the client requesting a specific port?

3. If so, is that port free to offer?

4. Is it within the client’s allowed port range?

5. If not, what is the next free port to offer to the client?

6. Is the client’s requesting duration valid?

The questions in this list can be broken up into two groups: lease management

and client restrictions. The lease management portion is responsible for tracking

existing leases, maintaining a list of free ports and deciding if client requests for

specific ports should be allowed. The client restrictions portion is responsible for

28

enforcing the administrator’s limits on client access, lease duration, port range and

renew capability. Since the lease management functionality was the most critical to

proper server functioning, it was written first. Client restriction capabilities will be

described in section 3.2.5.

The lease management component of the ServerPortManager uses a standard

Java HashMap in order to store the DPRPLease objects. This table maps from the pri-

mary key string to the actual lease object instance. Furthermore, when a new request

comes in, a temporary lease is created, and used to query the ServerPortManager

instance. In this manner, a series of routines were written that took a lease reference

as a parameter, and then made checks against the ServerPortManager’s internal

state. Thus, a lease could be checked to see if it contained a valid port. Furthermore,

the ServerPortManager instance tracked all of the free ports, and could be queried

to take a free port off of the list, for use in a server offer.

In order to store leases in the ServerPortManager instance, the addReservation()

method was written. This method adds a reservation (lease) to the ServerPortManager’s

lease map. Generally, the a server session will only invoke this method after it

has determined that the lease in question has reached the “commit” stage. Since

addReservation() is called at “commit” time, it is also where the lease commit

functionality resides. Thus, the addReservation() method must not only add the

lease to its in-memory map, but it must also write the lease to disk, using the output

facilities of DPRPLease. In order to keep the in-memory map and the on-disk lease

database in sync, the addReservation() method actually over-writes the entire on-

disk database for every lease added. This is done by iterating over every key in the

map, and outputting the associated value to the file.

But even with all of these routines in place, the lease management task was still

not complete. Some facility was needed that could purge the server of expired leases.

Ultimately, the “lazy approach” won out. The server wouldn’t do anything to remove

29

reservations that had expired. Instead, the addReservation() method was modified

so that additional processing would be performed as the leases were being written to

the on-disk database. Instead of simply writing each lease out, addReservation()

now checks the lease to see if it has expired. If an expired lease is found, then it is

removed from the in-memory map, and it is not written to disk. Since this processing

was done every time a lease was added, the server was assured that it wouldn’t get

into a position where it thought that it’s port resources were exhausted, even though

in reality, they were not.

3.2.5 The DPRPRestriction class

In the process of implementing the ServerPortManager class, the set of restrictions

that the DPRP administrator should be able to place on client connections was de-

termined. However, in order to test the client restrictions facility, some facility was

needed in order to configure each restriction into the server. Essentially, not only was

an object that bundled all of the restrictions for each client into one place needed,

but so was a means for creating these objects and populating them with the proper

data. The DPRPRestriction class was a natural way to bundle all of the client re-

strictions. The exact method for creating instances of this class, however, was less

clear. Because adding more command-line parameters would have been unwieldly, a

different strategy was needed.

The real solution was to create an ASCII text-based configuration file, that con-

tained all of the client restrictions. This would make it easy for many sets of restriction

objects to be instantiated in the server all at one time. Not only would this make

testing easier, but it would also make things easier for DPRP server administrators.

The first step in realizing this goal was to decided upon a file format:

host

[renewAllowed = true | false] default = true

[numRetries = <#>] default = 0 (unlimited)

30

[portRange = <#> - <#>] default = 0 - 65536

[minDuration = <#>] default = 500

[maxDuration = <#>] default = 2147483647

[deny = true | false] default = false

With this format in place, a parser could be written to load each host block out of the

file, parse out any options present, and return a series of DPRPRestriction objects.

On the Java side, the text-parsing efforts were greatly aided by the java.util.StringTokenizer

class. Given a string, this class will parse it into tokens, based upon some notion of

a separator character (the default, a space, worked great for this file format). This

class greatly simplified the parser and allowed it to be developed quickly. With this

functionality in place, it was easy to load many host-based restrictions into the DPRP

server, which fulfilled the intended purpose.

3.2.6 The GUI client

A DPRP client employing a graphical user interface (GUI) allows end-users to easily

reserve DPRP ports for “legacy” applications that are not DPRP-enabled. During the

initial DPRP implementation, a command-line interface (CLI) client was created. As

the implementation progressed, the command-line architecture became too difficult

to extend, to the point that all of DPRP’s features could not be stressed. The GUI

DPRP client eased these limitations. Sun’s Swing [25] toolkit was used to create the

Java implementation of the GUI client. As figure 3.2.6 shows, the DPRP GUI client

consists of a single window that is divided into two panes. The upper pane is used for

acquiring a new DPRP lease, and the lower pane is used for managing outstanding

DPRP leases.

The upper window provides the interface for allowing the client to acquire new

leases. The transition from the CLI DPRP client to the GUI client was simply a

matter of integrating the original client functionality into the graphical interface.

This functionality is a simple message exchange between the client and the DPRP

31

Figure 3.4: Screen capture of the DPRP GUI client.

server. All possible configuration elements are gathered from text-input boxes, and a

new DPRPClient object is instantiated from those parameters.

Creating the lease management window, however, was much more complex. The

existing DPRP client code was not suited to the task of managing leases. Although

the proper thread structure was in place to renew a lease as needed, there was virtually

no infrastructure to notify the user of the lease status1. As a result, some extensive

modifications were needed to the existing DPRP client code in order to create a usable

GUI.

Like most other graphical environments, Swing is event-driven. As such, all actions

are represented in the form of events. An event is generated whenever a user clicks

the mouse, when an error occurs or when a graphical widget updates its contents.

In order to make a natural fit into the Swing framework, the core DPRP client code

needs to emit Swing events. Specifically, the DPRP lease maintenance thread needs to

emit Swing events whenever a lease is created, updated or destroyed. Unfortunately,

1The only infrastructure in place was the debugging output, which was really only suitable for

viewing by the developer.

32

creating objects that actually source swing events is not a well documented aspect of

Java. With great difficulty, the methodology for emitting a Swing event was extracted

by example from the JDK sources. Once in place, DPRP client code that could emit

Swing events proved to be quite useful , not only for setting up a dialog box informing

the user of a status change, but also for implementing the requisite lease management

functionality.

The next challenge was to decide upon a GUI widget that was capable of displaying

all of the lease-specific information for several leases. Since each lease consists of

several key data elements, and many leases needed to be displayed, a table structure

was used. Swing provides the JTable component, which is exactly the component

that was needed. In Swing, JTable is based upon a modified Model View Controller

(MVC) [26] framework. The table itself is simply a view on the underlying data,

which is encapsulated into a model. Because the DPRP GUI needed to display active

leases, a custom model needed to be created. The custom model, DPRPTableModel,

contains a list of DPRPLease objects that can act as a handler of DPRP lease events.

Whenever a lease is updated, the model receives a lease event and is, therefore, able

to update the tables view. With this final widget in place, the GUI DPRP client

was completed. With this client, it was possible to arbitrarily update and terminate

leases, thus testing those facets of the server. With the client code finally finished, the

sample implementation was ready to perform port reservation on a live NAT gateway.

3.3 Building a DPRP Gateway

In order to determine if DPRP had any chance of achieving its goals, a NAT gateway

that contained a DPRP implementation was needed. Obviously, it is beyond the

scope of this project to develop a NAT router from scratch. Thus, an existing NAT

solution was modified to recognize the DPRP protocol. The easiest way to do this

33

was to locate an open-source NAT implementation, so that the full source code was

available. Since Linux is popular and fairly robust, it was targeted to be the DPRP

NAT gateway reference platform. Specifically, since the packet mangling framework

on Linux changes with every major kernel revision, the most recent one was targeted,

which is “Netfilter”.

3.3.1 About Linux/Netfilter

Netfilter [27] is the latest-and-greatest packet mangling framework for Linux. Essen-

tially, the aim of this package is to be an end-all for every type of packet mangling,

routing, and firewalling. Thus, NAT functionality is simply one component of the

Netfilter suite. The Netfilter system is based upon a series of tables, each one repre-

senting a major component. For the purposes of DPRP integration, the NAT table

was the most important. For each table, there are a series of chains, which are lists

of packet-matching rules. Of the default chains that come with the NAT table, the

DPRP integration needed to leverage two: the PREROUTING and the POSTROUTING

chains. These two chains deal with packets that are mangled by NAT before or after

the kernel routing code sees them. The POSTROUTING chain is good for doing source

NAT, because the exit interface must be determined before the source address can be

replaced. Similarly, the PREROUTING chain is a good place for destination NAT rules,

because the destination address must be replaced with the proper internal address

(according to the internal tables) before it can be routed. When a packet enters

the gateway, it is thrown to the appropriate chain and tested against each rule in

succession, until a “match” is found. Thus, in Netfilter, there can be multiple rules

on a chain that vie for the same resource. The only rule that will ever be matched,

however, is the one that appears first in the chain.

34

Parameter: Description:
-v Enables verbosity, which is only useful for debugging.
-t nat Selects the “nat table.
-A PREROUTING Selects the “PREROUTING” chain of the nat table.

This means that the packets will be mangled before be-
ing passed to the IP routing code.

-i eth0 Specifies that the inbound interface for packets match-
ing this rule should be eth0. NOTE: This should not
be hard-coded, and will be parameterized in a future
release.

-j DNAT Causes the packet match to jump to the “destination
nat” builtin target.

-p <protocol> Sets the protocol (tcp or udp) type that packets must
be in order to match.

--destination <external IP> Ensures that the packets are bound for the external ad-
dress of the gateway before they are mangled.

--dport <allocPort> This is the actual port that we have reserved – if the
packet is bound for the external IP address, and matches
this port, then it will be NAT’d and routed into our
client.

--to <clientIP>:<allocPort> The ultimate destination for these packets – an IP ad-
dress and port on the client that made this reservation.

Table 3.2: iptables command-line arguments

35

3.3.2 Integrating the Java DPRP Server with Netfilter

In order for the DPRP server to be able to setup live translations on a Netfilter

gateway, it must install the appropriate rules. In Netfilter, rules are installed via the

iptables command. Various parameters to this command allow the proper table,

chain and rule properties to be selected. For the purposes of the DPRP server, all

iptables commands executed will conform to the following template:

/usr/sbin/iptables -v -t nat -A PREROUTING -i eth0 -j DNAT \

-p <protocol> --destination <external IP> \

--dport <allocPort> --to <clientIP>:<allocPort>

Table 3.2 provides the details for each parameter and it’s intended function.

The final caveat to mention about this port allocation code is that the DPRP

server needed some way to avoid conflicts between ports reserved by DPRP clients

and ports reserved in the gateway during the normal course of source NAT routing.

Since the iptables command doesn’t emit an error in the case of such a conflict,

this became an administrative issue. The range of ports allowable for use with SNAT

needs to be restricted and the left-overs given to the DPRP code.

Detecting a proper Linux host from Java

It is desirable for the server code to detect if it is running in a proper Linux/Netfilter

environment. The benefits of this detection are two-fold: server administrators will

receive immediate notification if the DPRP server likes their Netfilter environment,

and the server isn’t necessarily restricted to running on Netfilter-based hosts. If

a proper Netfilter environment is detected, then the DPRP server will go ahead

and actually allocate Netfilter ports for each client request. However, if the proper

environment is not detected, then the server will run in a test mode, handing out

“dummy” ports just as before. This gives the server an additional level flexibility.

In Java, the OS detection was simply a matter of querying the system properties to

36

see if the OS name was “Linux”, if the user was “root” and if the /sbin/iptables

command exists. If all three of these conditions were met, then the server assumes

that it should be possible to exec() Netfilter commands.

Using exec() in Java

Although it is not widely known, a Java program can execute a system binary. This

feat is accomplished via exec() method, which Sun buries in the Runtime object. Al-

though the use of exec() is not recommended by Sun, it is well suited to the DPRP

server’s Netfilter integration. In order to use exec(), an array of text strings contain-

ing the binary to be executed and all of the command-line parameters must first be

constructed. Because exec() doesn’t have the luxury of a shell, each parameter that

would normally be separated by a space had to be placed into its own location in the

array. This array is then handed off to exec(), which starts a new process to run the

binary, returning a Process instance to the caller. With the Process instance, the

server is able to wait for the command to finish executing, at which point, the exit

status is checked. If the exit status is non-zero, then an error occurred and the server

would not complete the request. Otherwise, the lack of error is taken to mean that

the port had been successfully reserved.

Modifying the ServerPortManager

If the OS detection code finds an appropriate Linux-based machine with Netfilter sup-

port, it sets a flag in the Server Port Manager instance. This effectively enables “linux

mode” in the Server Port Manager. In this mode, the allocFreeExternalPort()

method will utilize the exec() facility in order to place a reservation rule for the

client in the “destination NAT” Netfilter chain. The delReservation() method will

utilize the exec() facility in order to delete a rule from the “destination NAT” chain.

37

3.3.3 The “Netfilter Problem”

Unfortunately, during testing, a problem was uncovered with Netfilter, that merited a

great deal of investigation. From time to time, a Netfilter machine that was configured

with destination NAT port forwarding, would simply stop forwarding certain ports.

Since the entire aim of DPRP is to enable port forwarding, it was imperative to

resolve this issue. In order to get a handle on this problem, a static destination

NAT rule was added to permit X connections from the outside in to the development

workstation. So that this rule didn’t conflict with any X server running on the

gateway, the rule redirected port 6001 on the gateway to port 6000 on the development

workstation. Thus, if the “gateway:1” were set on remote machines, X programs

would subsequently show up on the development workstation, at the “workstation:0”

display. This all worked great, at first.

However, at seemingly random times, Netfilter would simply stop forwarding the

port 6001 reservation. Rebooting the gateway would make the forwarding start work-

ing again, so that, combined with the fact that this was a static rule (and not a

DPRP-installed rule), narrowed this down to a Netfilter problem. Further investi-

gation showed that whenever the external interface re-negotiated its DHCP lease,

the port forwarding would stop. This behavior was verified manually by causing the

DHCP client to renew it’s lease, and witnessing the immediate halt of port forward-

ing. So, the solution seemed obvious – the external Ethernet interface was set to be

statically configured. Unfortunately, the static IP address did not resolve the port

forwarding stoppages. This time, the stoppages could not be traced to any particular

system-level event. The gateway was upgraded to a newer version of RedHat, along

with which came kernel version 2.4.7.-2. This seemed to improve port forwarding

stability, but the problems continued to persist.

The final realization on this problem occurred when, during an outage, Netfilter

was instructed to delete the 6001 port forwarding rule. Surprisingly, Netfilter refused

38

to delete the rule. Further, the error message seemed to indicate that the rule didn’t

even exist – yet it showed up in the list of destination NAT rules. Thus, it seems like

Netfilter just “forgets” about certain rules after a period of time. Testing further,

Netfilter was directed to re-add the rule port 6001 rule on top of itself. A listing of the

rules now showed two identical rules, both attempting to forward “gateway:6001” to

“workstation:6000”. However, adding this second rule fixed the X forwarding. This

makes sense – Netfilter simply walks down the chain of rules, looking for a match.

Since it was no longer-seeing the first forwarding rule, the X port forwarding was

“broken”. With the addition of the second rule, however, Netfilter was now able to

“see” the port 6001 forwarding rule, and thus forwarding service was restored. So, it

seems like there is some sort of bug in Netfilter, that could quite possibly be fixed in

newer kernel versions. Fortunately, it was possible to work around this bug, and as

such, it didn’t hamper the development of a DPRP server with Netfilter support.

3.4 Embedding DPRP into Napster

The most important aspect of DPRP is that client functionality can be embedded

into existing applications in order to make NAT gateways a “fully transparent” user

experience. In order to demonstrate the promise that embedded DPRP clients hold,

a peer-to-peer file sharing network was chosen to be modified as a proof-of-concept.

Back in its prime, Napster [9] was the largest peer-to-peer file sharing network in

existence. Although Napster’s dominance has waned for political reasons, it is still

interesting from the DPRP perspective. First, Napster is server-based which means

that clients connect to a central server that acts as a central repository for file sharing

information. Searches are performed on the server, the results of which can be used to

download files from the appropriate peer. Second, the limitations of Napster and NAT

gateways are well documented and understood. Additionally, the Napster protocol

39

[28] has been reverse-engineered and documented by the open-source community.

With this protocol, the open-source community was able to produce a free Napster

server, entitled OpenNap [29]. An open Napster server was important because it

could be modified to support DPRP if needed. Also, it would be much easier to test

the DPRP Napster implementation with a private Napster server. Finally, because

Napster has been around for several years, there are a wide variety of clients available,

many of which were suitable for modification with DPRP.

As proof-of-concept, a pre-existing Napster client was selected to take on an em-

bedded DPRP client. The simplest way to embed DPRP into a Napster client was

simply to have the embedded DPRP client negotiate a TCP port at startup, and

maintain that port for the entire lifespan of the Napster client. While this might

not be the most efficient approach, it mitigated all of the issues with negotiating a

specific port for specific transfers. Furthermore, using this approach, the OpenNap

server did not need to be modified. It would simply advertise the IP address and port

number that the client assigned to it, which in the DPRP case, would be the external

IP address of the gateway and the leased external port.

Of the many open-source Napster clients available, XNap [30] was selected as the

basis for the DPRP implementation. XNap is a Napster-based file sharing client,

written in Java, with the code freely available under the GPL [31]. This is the

only such Napster client that is still under active development. With effort, it was

determined that the existing Java DPRP client could be added to XNap. This client

would function without a controller, so it would not be able to notify the user if a lease

was acquired or of any changes in lease status. If the embedded DPRP client could

not establish a lease, then it would shut down the entire XNap client. Furthermore,

the XNap preferences were modified so that end users could not change the XNap

listening port, since that was now in control of DPRP.

With the embedded DPRP client in place, the XNap client was able to function

40

on the Napster network as if it was not behind a NAT gateway at all. External clients

were able to download songs off of the DPRP-enabled XNap client with ease. In the

situation where the DPRP-enabled XNap user wished to obtain a song from a legacy

Napster client stuck behind a NAT gateway, the remote Napster client was able to

“push” the song onto the XNap client with the open port. Thus, this demonstration

proves that embedded DPRP functionality can truly and effectively remove the in-

bound connection limitations of NAT gateways.

41

Chapter 4

Evaluation

4.1 Security Implications

Aside from facilitating greater efficiencies in the use of IP addresses, NAT gateways

also provide additional security benefits hosts in the private address space. Since the

NAT gateway doesn’t allow incoming packets to internal hosts for which a translation

isn’t already established, this prevents malicious packets from making contact with

internal hosts. This means that things, such as port scans, are easily defeated. Fur-

thermore, flood attacks such as the “SYN flood” are also stopped at the gateway. As

a result, many installations of NAT gateways are done with these security properties

in mind. Consequently, any modifications to the functionality of a NAT gateway must

keep security concerns in mind.

This protocol doesn’t inherently weaken the security properties of the NAT gate-

way. It does make it easier for users to weaken these properties, and this is the

concern that administrators must keep in mind. The ability for NAT gateways to

forward “unsolicited” traffic from certain external ports to specific hosts has been

available for a long time. This behavior has always been controlled by the gateway

administrator. This protocol puts the power of controlling this functionality in the

hands of the user. Thus, users will be able to receive unsolicited packets directly on

42

their machines. This means that administrators won’t be able to rely on the NAT

gateway to provide total security against incoming connections.

A NAT gateway that implements this protocol will still give the administrator

some control over it’s use. Certain hosts could be denied access to the protocol.

Other hosts could be restricted to a certain number of valid leases. Furthermore,

restrictions could be placed on lease length and number of renewals allowed (to prevent

the running of web servers, for example). All of these options should provide enough

“granularity”, so that the balance between functionality and security can be set to

match the administrator’s desires.

4.1.1 The “worm” implication

In considering the latest round of IIS and e-mail worms, it’s possible that this protocol

could slightly aggravate the security problem that these worms represent. Consider a

public webserver, that is operating via port forwarding from behind a NAT gateway.

If a worm is able to infect this public webserver, then it would then be free to infect

many other machines that are on the private network. Under normal circumstances,

the worm wouldn’t be able to penetrate these machines directly, because they would

be protected by the NAT. If the worm were to contain an embedded DPRP client,

however, it could negotiate external ports with the NAT gateway. These ports could

then be advertised to the worm author, who could then penetrate these previously

protected machines.

4.2 Complete end-user transparency is hard

One of the main goals for DPRP was for it to be a protocol that lives behind the

scenes; something that end users’ benefit from on a daily basis, but have no idea

even exists. DPRP is the last piece of the NAT puzzle – something that makes NAT

43

truly transparent to the user1. During the course of creating the DPRP reference

implementation, however, it became evident that this goal of complete transparency to

the end-user is still quite difficult to achieve. The initial assertion was that embedding

DPRP into mainstream applications would provide the desired degree of transparency.

Unfortunately, there is more to transparency than the location of the DPRP client.

Essentially, what I failed to realize is, that for proper operation, any DPRP client

needs access to the following pieces of information:

1. That it is behind a DPRP-enabled NAT gateway. While it is possible for a client
to determine that it is behind a NAT gateway [10; 32], it really isn’t feasible to
detect if said gateway is DPRP-compliant, because the DPRP server may not
be running on the standard UDP port.

2. The IP address of the NAT gateway.

3. The UDP port number of the DPRP server on the NAT gateway.

4. The local IP address to use if multiple interfaces are present in the system.

In current incarnations, all of these parameters must either be guessed (which is

usually crude), or be user-supplied. If a user has to supply DPRP-specific values,

then DPRP is not transparent. Ideally, some additional infrastructure is needed so

that the DPRP client can query the network for all of these parameters. The IETF is

developing a protocol entitled “Service Location Protocol” (SLP) [33–35] that may fit

the bill. Essentially, SLP allows services to be located in the network transparently,

without user intervention. The DPRP client could request a handle to the DPRP

service, and it would then gain all of the information that it needed in order to

function properly without additional user intervention. At this point, the integration

of DPRP with SLP is a topic for future investigation.

1Of course, NAT gateways will never be truly transparent to the “power users” who are always

trying to do something outside of the mainstream

44

Chapter 5

Conclusion

As realized, the DPRP solution has met the design goals that were set for it, and is

poised to solve the NAT in-bound connectivity problem in an effective manner. The

DPRP protocol itself is simple and lightweight, and should be portable to a wide

range of networked computing devices. The DPRP reference implementation has

properly validated the protocol. The reference implementation’s ability to reserve

ports on an actual Linux/Netfilter NAT gateway validates the concept of dynamic

in-bound port reservation on a NAT gateway. Finally, the modifications to the XNap

Napster client show that DPRP can solve real NAT-related connectivity problems for

real applications.

DPRP stands up well to the pre-existing solutions that were reviewed in chapter

2. When compared to Dan Kegel’s UDP hack, DPRP excels because it supports

TCP and can function with NAT gateways that are forced to change port numbers

during the process of translation. Although Dan Kegel’s solution requires less imple-

mentation overhead, the overhead to implement DPRP is not much more than for

Dan’s minimal solution. When compared to RSIP, DPRP is drastically simpler to

implement, requiring only that additional functionality be added to the NAT gate-

way and the addition of DPRP clients. However, DPRP does make some sacrifices in

terms of the amount of connectivity offered. RSIP is still a more complete solution.

45

Finally, DPRP requires less infrastructure changes than AVES, while offering nearly

the same level of connectivity. The only advantage of AVES over DPRP, is that the

AVES clients have greater flexibility in the ports that they may use, while DPRP

users must share one port space.

The next step for DPRP is to be recognized as a standard by the Internet com-

munity. Because standardization guarantees inter-operability and protocol stability,

it is necessary to encourage developers to include it in their products. More work is

needed on the reference implementation in order to make it easier for developers to

add DPRP functionality to their products. The feature-set of the current reference

implementation should be expanded to make it more easily reusable. Other imple-

mentations should be written in popular languages such as C. With these changes

in place, the barrier of entry for DPRP developers should be low enough to enable

widespread adoption. Ironically, once widespread adoption of DPRP is achieved, the

next step for the protocol will be to die. It is predicted that IPv6 will eventually take

over the Internet. When it does, NAT gateways and DPRP along with them will

largely be rendered irrelevant.

46

References

[1] K. Egevang and P. Francis. “The ip network addres translator (nat).” RFC-1631
(May 1994).

[2] J. Postel. “Internet protocol.” RFC-791 (September 1981).

[3] V. Fuller, T. Li, J. Yu, and K. Varadhan. “Classless inter-domain routing (cidr):
an address assignment and aggregation strategy.” RFC-1519 (September 1993).

[4] S. Deering and R. Hinden. “Internet protocol.” RFC-2460 (December 1998).

[5] C. Shinn. “Ipv6 today and tomorrow.”
http://www.hill.com/news/archives/mtsarticle cshinn.shtml (January 2000).

[6] G. Tsirtsis and P. Srisuresh. “Network adress translation - protocol translation
(nat-pt).” RFC-2766 (February 2000).

[7] G. E. Moore. “Cramming more components onto integrated circuits.” Electronics
38 4 (April 1965). Http://www.intel.com/research/silicon/moorespaper.pdf.

[8] J. Postel and J. Reynolds. “File transfer protocol (ftp).” (1985).

[9] N. Incorporated. “The napster music sharing system.” http://www.napster.com
(1999).

[10] D. Kegel. “Nat and peer-to-peer networking.”
http://www.alumni.caltech.edu/˜dank/peer-nat.html (1999).

[11] J. Postel. “User datagram protocol (udp).” RFC-678 (August 1980).

[12] J. B. Postel. “Transmission control protocol (tcp).” Technical Report 793, SRI
International (1981).

[13] L. Phifer. “Realm-specific ip for vpns and beyond.”
http://www.isp-planet.com/technology/rsip.html (2001).

[14] S. Kent and R. Atkinson. “Security architecture for the internet protocol.” RFC-
2401 (November 1998).

[15] USENIX Annual Technical Conference 2001. A Waypoint Service Approach to
Connect Heterogeneous Internet Address Spaces, Boston, MA (June 2001).

47

[16] D. Senie. “Nat friendly application design guidelines.” (2000).

[17] P. Mockapetris. “Domain names - implementation and specification.” RFC-1035
(November 1987).

[18] I. Consortium. “Berkeley internet name domain (bind).”
http://www.isc.org/products/BIND (June 2000).

[19] P. Ferguson and D. Senie. “Network ingress filtering: Defeating denial of service
attacks which employ ip source address spoofing.” (1998).

[20] R. Droms. “Dynamic host configuration protocol.” RFC-1531 (1993).

[21] R. Fielding, J. Gettys, J. Mogul, H. Nielsen, L. Masinter, P. Leach, and
T. Berners-Lee. “Hypertext transfer protocol – http/1.1.” RFC-2616 (June
1999).

[22] S. Microsystems. “The java language: A white paper.”
http://java.sun.com/doc/overview/index.html.

[23] J. Goldschmidt and N. Stone. “Jdhcp - dynamic host configuration protocol for
java.” http://www.dhcp.org/javadhcp/main.html (1999).

[24] M. A. Poolet. “Sql by design: Good database design starts with the right primary
key.” http://www.sqlmag.com/Articles/Index.cfm?ArticleID=5113 (1999).

[25] K. Walrath and M. Campione. “Creating a gui with jfc/swing.”
http://java.sun.com/docs/books/tutorial/uiswing/index.html (2001).

[26] S. Burbeck. “Applications programming in smalltalk-80(tm): How to use model-
view-controller (mvc).”
http://st-www.cs.uiuc.edu/users/smarch/st-docs/mvc.html (1992).

[27] R. Russell, H. Welte, J. Morris, and M. B. et. al. “The netfilter project: Packet
mangling for linux 2.4.” http://netfilter.samba.org/ (2000).

[28] drscholl@users.sourceforge.net. “Napster protocol specification.”
http://opennap.sourceforge.net/napster.txt (march 2001).

[29] drscholl@users.sourceforge.net. “Opennap: Open source napster server.”
http://opennap.sourceforge.net (September 2001).

[30] F. Berger, Y. Leist, F. Student, M. Ransburg, and S. Pingel. “Xnap - a pure
java filesharing client.” http://xnap.sourceforge.net (September 2001).

[31] F. S. Foundation. “Gnu general public license.”
http://www.gnu.org/copyleft/gpl.html (June 1991).

[32] K. Lin. “ipcheck.py - a python script for use with dyndns.org.”
http://ipcheck.sourceforge.net (December 2001).

48

[33] C. Systems. “An introduction to slp.”
http://www.openslp.org/doc/html/IntroductionToSLP (June 2001).

[34] J. Veizades, E. Guttman, C. Perkins, and S. Kaplan. “Service location protocol.”
http://www.openslp.org/doc/rfc/rfc2165.txt (June 1997).

[35] E. Guttman, C. Perkins, J. Veizades, and M. Day. “Service location protocol,
version 2.” http://www.openslp.org/doc/rfc/rfc2608.txt (June 1999).

49

