ECES 433

Final Design Project

“Bringing an RDBMS to
TACACS+"

by Andrew Reitz (reitz@ces.cwru.edu)

December 11'", 1998

ECEX33: Final Project December 3, 1998

Introduction

In the realm of data networking, it currently very useful to provide remote access
to a network, for those that must be away from it. This means that it should be possible to
access a private network (such as a campus Intranet) via some sort of public network
(either the telephone system, or as is the case more recently, the Internet). Because thisis
such a useful service, many network companies have created many different access
mechanisms over the years. Starting with the primitive terminal server, and moving on to
the current PPP access server, each held the common remote-access goal in mind. The
Internet Engineering Task Force (IETF), with the aid of companies like Cisco Systems,
attempted to bring some level of commonality to all of these devices by several means.
The devices by which remote users actually connected to the local network were termed
the Network Access Server (NAS). Typically, aNAS must have some means by which it
can Authenticate, Authorize, and Account for its remote users. Before standardization,
these roles were handled in unique and proprietary manners. The standardization process
specified the exact roles of the NAS and the back-end NAS server, in order to smplify
their respective implementations, as well as provide a foundation for interoperability.
Thus, a set of protocols were specified, in order to govern the communication between
the NAS and the back-end NAS server, which is in essence the central governing body
for all of the NAS's in the network. By creating a common protocol, NAS's from many
vendors would be able to interoperate with a single NAS server, thus simplifying the
Network Administrator’ srole greetly.

For the purposes of this assignment, | am going to focus on the so-called Terminal
Access Controller Access Control System Plus (TACACS+) NAS server, as designed by

Cisco Systems. TACACS+ was designed with complete separation and extensibility of

Bringing an RDBMSto TACACS+ Page 2 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECEX33: Final Project December 3, 1998

the three basic elements (authentication, authorization, and accounting) in mind. The
process of verifying the identity of a user (or entity) is accomplished through
authentication in TACACS+. Many different username/password authentication methods
are supported, via the extensible nature of TACACS+. An authorization request in
TACACS+ attempts to refine the level of access that a remote user has with the local
network. This can be anything from restricting configuration parameters (service type, IP
address, how routing information is passed) to actually establishing a per-session Access
Control List (ACL), limiting which areas of the network to which the user can gain
access. Finally, accounting is the process by which all of these remote user sessions are
logged. The accounting mechanism is generalized enough that it can record what a user
has or is currently doing on the network, and thus can be used for billing services as well
as to perform security auditing.

As implemented, the TACACS+ server stores al of its information in a series of
plain ASCII text files. Thisis fine for most useses of this service, but as Ameritech’s use
of TACACSt+ grows, so do their requirements for it. The requirements range from
increased reliability and scalability issues, to those of more flexible reporting/querying of
the data. Thus, it is important to describe the benefits (both actual and desired) which
Ameritech seeks to gain by implementing TACACS+ with an RDBMS back-end. Firstly,
it is hoped that an RDBMS will provide a unified engine for al of the data necessary in
order to support a customer. Furthermore, the RDBMS should easily allow concurrent
access to the data, from multiple TACACS+ servers. An RDBMS should also allow strict
partitioning of data — so that all of the records for each customer could be kept separate

(and secure) in a logical manner. Finally, ease of querying (both via SQL and

Bringing an RDBMSto TACACS+ Page 3 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECEX33: Final Project December 3, 1998

transactions) is a definite plus — some of the more advanced data manipulations are

becoming too difficult to do with just flat text files.

Initial description of Data Model

In essence, as previously discussed, there are three basic relations in this model:
Authentication, Authorization, and Accounting. Furthermore, each relation (at least
initially) will form the basis of a corresponding table in the dtabase. Each relation will
have it’s own unique features, and it’s quite possible that one or more of them might act
independent of the others. The following is a description of the data model, taken one
relation at atime.

Authentication:
All of the information necessary in order to authenticate a user and establish their

initial network connection is contained in a “ configuration file” -style format. The exact
nature of the syntax used in this file is actually rather ad-hoc, and probably not in BNF.
In essence, the authentication consists of a series of attribute-value pairs for each user
record, that define the paramaters for his’her acceptance into the NAS. Thus, migrating
this relation to an RDBMS contains it’s own special set of challenges. Since there can be
avariable amount of data, and | cannot use an Object-Relational approach (which, at least
in theory, would make it easy to manage a variable amount of data per row), | plan to
make liberal use of NULL values. Basically, there are two methods to attack this
problem. The first is to attempt to implement a subset of all possible parameters that
TACACS+ alows in the authentication configuration file, in order to support the most
common requirements of most sites. A subset must be supported in order to keep things
from getting exponentially complex. The second method of modeling this data involves

including only the attributes that are actually used by Ameritech. As it turns out,

Bringing an RDBMSto TACACS+ Page 4 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECEX33: Final Project December 3, 1998

Ameritech uses a very limited subset of all of the authentication options available, in a
very uniform mannter. Thus, the second method will actually be implemented during the
course of this assignment. The entities in this method include those for a userid and
fullname, as well as password and group-affiliation.

Authorization:
The authorization information is used to constrain the range of connectivity for a

session, based upon the userid. In the current TACACS+ server, this information is
actually presented in the same file (and format) as the authentication information.
However, | plan to break from this current methodology, and analyze this relation
separately from the Authentication relation. Like the authentication information, the
authorization information consists of a list of attribute-values (AV) pairs. Each AV pair
specifies an option (attribute) and its desired effect (value). However, the authorization
relation differsin one key area: not all values are mandatory. The attribute and value may
be separated either by an equals sign (‘=") or an asterisks (‘*’). The former indicates that
the attribute is mandatory, the latter indicates that the attribute is optional (and thus can
be disregarded at the receiver’s whim). Implementing this in a relational database would
pose a very special challenge: typically, a hard link exists between any given value in a
field. The notion of optional values doesn't seem to exist in the realm of relational
databases. The only method of which I can think that might support this would be some
sort of encoding scheme, whereby fields were marked optional or not. This could consist
of an extra “ optional-status’ field for every other field in the relation, or as an additonal
integer field that acts as an *“optional-mask’. Fortunately, for the purposes of
Ameritech’s use of TACACS+, only the mandatory attribute value pairs are ever used.

This, this implementation will only consider the mandatory attribute-value pairs.

Bringing an RDBMSto TACACS+ Page 5 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECEX33: Final Project December 3, 1998

The exact types of attributes that are contained in an authorization record are
variable and extensible, based upon the requirements of the NAS and the customer. In
general, the entities included in this relation will cover areas such as access-control,

timeouts, and network addresses.

Accounting:
The accounting table is a repository for al of the log-style type data that a

TACACS+ server generates during the normal course of operation. The basic types of
data logged falls into three separate categories (or types):

» START - Indicatesthat a particular service is about to begin.

» STOP - Indicatesthat agiven service has stopped.

» UPDATE - Indicates that a given service is ill in progress, and that
there is some new datato be considered in this session.

Although these records don't inherently have a state, as the TACACS+ server logs them,
it is possible (and, as it turns out, very useful) to draw states from the raw information.
Using the START and STOP records, combined with the task_id and NAS-hostname, it is
possible to account for a call. Basically, a call is one user session, from the initial
connection, to when they finally end the connection by hanging-up. Since this state
information is so useful (just about al of the accounting queries revolve around this), it
makes sense to split the accounting information into two tables: one filled with the raw
data received from TACACS+, the other consisting of the constructed call records. This
would be implemented via some sort of transaction, that culls the call records from the
raw data, and stores said records in a new table.

Unfortunately, because life is unpredictable, it isn’'t always true that there will be
a corresponding START record for every START record. The following list explains all of

the possibilites that exist:

Bringing an RDBMSto TACACS+ Page 6 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECEX33: Final Project December 3, 1998

Possible causes for a dangling STOP record:

1. The login attempt failed before authentication (or authorization, as the
case may be) succeeded. This could be identified by the fact that all of the
regular byte counters will be zero.

2. The user attempted to login using a userid that wasn't found in the system.
The TACACS+ server will log this type of request as a STOP record.

3. The associated START record was in fact generated by the NAS, but was
lost in transit to the TACACS+ server. There is no way to reliably detect
such an occurrence.

Possible causes for a dangling START record:
1. Thecal is «ill active.

2. The call has stopped, but the associated STOP record was lost.

Thus, for these reasons, procuring a call state from the raw data isn't always possible.
Consequently, any records that were left in the original raw table could be analyzed
Separately.

ER Diagram:
. many many

Authentication Raw Accounting

/’ \\
-7 userid ~>~_
\\relatlon//

N Pl

") man
Authorization Calls Completed |

_ many . NAS-

In summary, this diagram gives a “feel” to initial design, and in fact presents

some information that hasn’'t yet been discussed (such as the potential keys for the

relations). The Authentication and Authorization relations are related through the userid

Bringing an RDBMSto TACACS+ Page 7 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECEX33: Final Project December 3, 1998

attribute, in a one-to-one relationship. Basically, we require that for every user record that
exists in the Authentication relation, that a corresponding record exist in the
Authorization relation (although, all of the authorization-specific values may be NULL, if
the customer wishes). It's important to note that the “ userid relation” doesn't exist
anywhere else in the database other than in the ER diagram. It is simply a visual method
for displaying the link between the Authentication and Authorization relations.

The accounting relations aren't actualy linked by any attributes in the database.
Instead, their link is a conceptual one. Because the Calls Completed table is generated
from the Raw_Accounting table, it makes sense to think of these two tables as related,
when in actuality, they don't have a hard link.

The following is a listing of possible queries, broken down by service-type, and
ordered by frequency of arrival.

Authentication:
1. Emulate an Authentication request — search for a user, and return his/her values.

2. Determine the total number of users, as well as the number of active users (those who
have a password other than the default).

3. Display alist of users that have at least one password set to “ tempassl” . This is the
default password, set when an account is first created. Thus, this query can be used to
show which users haven't used their accounts as of yet, which could lead to a
potential security issue.

4. Find all users that have both the special “admin” type attribute, as well as an
uninitialized password. Thisis a very big security hole.

Authorization:
5. Emulate an Authorization request — search for a user, and return his/her attributes.

6. Display users of type admin that have very permissive security settings.

7. Display a list of “secure” userid's — those that have values for both the inacl, and
outacl attributes. Furthermore, their routing attribute should be set to false.

8. Display alist of all users who have very “ limited” access —i.e. their timeout value is
less than or equal to 60 minutes.

Accounting:
9. Display alisting of usersthat are logged in on agiven NAS for a given time period.

Bringing an RDBMSto TACACS+ Page 8 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECEX33: Final Project December 3, 1998

10. Display a“ call history” (complete list of calls) for a given user.
11. Find the last login for every user, sorted in reverse order.

Design of Relational Database

In the section that follows, | will attempt to actually design the database. This will
involve designing the schema for each relation, showing the appropriate SQL for each
schema, and also re-visiting the potential queries above. Again, this task will be
partitioned, and each relation will be analyzed separately.

Authentication:
As previously discussed, there are two different methods for handling the

complex TACACS+ authentication structure. One method is to attempt to emulate all of
the options supported as well as can be supported in arelational database. The conceptual
schema (and associated discussion) for this approach follow:

Full_Authentication (userid: string,
login: string,
secondary_login_type: string,
servicel: string,
protocol1: string
protocol1l param: string
service2: string,
protocol2: string
protocol2_param: string
service3: string
protocol3: string
protocol3_param: string)

The value of the userid attribute represents a unique user in this particular
authentication table. This userid designates the start of a record in the config-file format,
and each user may have a variable number of configuration-type parameters associated
with him/her. The login attribute specifies that the user has the capability to login to the
remote network. The secondary login_type attribute is optional, and can specify a

different sort of login protocol to be used. Possible values include pap, chap, and ms-

Bringing an RDBMSto TACACS+ Page 9 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECEX33: Final Project December 3, 1998

chap. If asecondary_login_type isn't specified for a user, the NAS may then revert to the
value contained in the regular login attribute in order to authenticate the user.

The final set of attributes represents an attempt to deal with the arbitrary and
variable nature of the TACACS+ authentication configuration structure. Basically,
TACACS+ alows for an arbitrary number of service attributes, and each service attribute
may have further protocol attributes embedded within it. This is where object-relational
databases would really be useful, but since | don’t have that, the appropriate behavior can
be emulated (to a certain extent) by including multiple corresponding service and
protocol attributes.

Another possible way to design the Authentication schema is to implement only
the attributes that Ameritech requires for the daily use of their TACACS+ servers. While
this approach is less flexible, it will readily support the TACACS+ servers that are in the
field today, and speed the implementation of the RDBMS. Thus, | will implement this
project based around the following conceptual schema:

Authentication (userid: string
name: string
login: string
member: string

chap: string

pap: string
type: string
global: string)

The userid and login attributes are the same as above. The pap and chap attributes
are derived from the secondary login_type from above, and hence contain similar
functionality. The name attribute is simply atext string that lists the user’s full name. The
member attribute associates the particular user with a group. A user inherits all AV pairs

from all groups of which it is a member. If the AV pairs conflict, then their own local

Bringing an RDBMSto TACACS+ Page 10 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECEX33: Final Project December 3, 1998

values will take precedence over group values, and group values will take precedence in
the order that they are listed. Today, Ameritech only uses one group, and all users are

placed in said group. The format of a group looks something like this:

group = tenplate {
Service = ppp protocol
Service = ppp protocol

lep { }
ip{}

}

In this case, the group contains the service parameters necessary in order to define the
PPP service that is offered to the remote client. For the time being, since there is only one
group, there isn't a need to store it in a separate relation. In the future, it might be more
flexible to store the group information in a separate relation, so that those queries could
gain a more accurate understanding of a particular user’s profile.

The last two attributes that deserve discussion are type and global. The type
attribute is optional, and is used to specify whether-or-not the user is of a special type,
which entitles them to special privileges. Currently, only the special “admin” type is
supported. This type alows the user to use the administration client, in order to
add/modify/delete users on the system. Finally, the value of the global atribute is a
password that can be applied to any authentication method. Apparently, the implementers
of TACACS+ at Ameritech learned about the global attribute after a large investment had
been made in storing passwords in their individual authentication formats, so both forms
were kept. Thus, for completeness, this project has been written to support both the
legacy and newer global password storage mechanisms.

SOL Implementation of the Authentication schema:

CREATE TABLE Aut hentication(userid VARCHAR2(11),
nane VARCHAR2(30),
| ogi n VARCHAR2(18),
menber VARCHAR2(10),
chap VARCHAR2(18),
pap VARCHAR2(18),
type VARCHAR2(5),

Bringing an RDBMSto TACACS+ Page 11 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECEX33: Final Project December 3, 1998

gl obal VARCHAR2(18),
PRI MARY KEY (userid));

Authorization:
For the purposes of this assignment, the conceptual Authorization schema will be

as follows:

Authorization (userid: string,
inacl: integer,
outacl: integer,
timeout: integer,
idletime: integer,
addr: string,

routing: boolean,
route: string)

The userid attribute corresponds to an userid value in the authentication table.
Basically, this means that it is a foreign key in the Authorizatoin relation. Thus, there can
only be one authorization record per userid, since the userid must be unique in the
authentication table. The inacl and outacl refer to inbound and outbound access lists,
identified by a unique integer. Since these access lists are protocol dependent, and thus
can be very complicated (For example, Cisco allows them to operate on layer four of the
OSlI TCP/IP model), they tend to be stored in the NAS. This both eases NAS
implementation and increases performance, but impinges upon administrator
maintainability of the system. The timeout and idletime attributes take integer values that
represent a span of time, in seconds. The timeout parameter represents an absolute time
for the session. For example, the CWRUnet free PPP dial-in pool uses a timeout of one
hour, a which point the user will be automatically disconnected. The idletime attribute
specifies how long a user may stay connected without displaying any activity (basically,
data transferred). When this amount of time has been exceeded, the user will be

disconnected by the NAS.

Bringing an RDBMSto TACACS+ Page 12 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECEX33: Final Project December 3, 1998

The final three attribute-value pairs deal with the network-layer configuration.
The exact format and meaning of these parameters is determined by the protocol
specified in the authentication database. The addr attribute specifies a network address,
to be used by the remote host when connecting via SLIP or PPP/IP. The boolean routing
attribute specifies whether-or-not the NAS is supposed to both send or receive routing
information from the client. The route parameter specifies any network routes that should
be configured automatically when the user-session is first established.

SOL Implementation of the Authorization schema:

CREATE TABLE Aut hori zation (userid VARCHAR2(11),
i nacl | NTECER,
outacl | NTEGER,
ti meout | NTEGER
idletime | NTEGER,
addr VARCHAR2(15),
routi ng VARCHAR2(5),
route VARCHAR2(49),
FOREI GN KEY (userid) REFERENCES Aut henti cati on);

Accounting:
We will begin by dissecting the raw_accounting table. For the purposes of this

project, we will only deal with the START and STOP records, primarily because
Ameritech uses very few UPDATE records. In this scenario, the START and STOP
records share a common base, a set of fields that start off the record. However, the STOP
records add many additional statistical fields to their record. Consequently, in order to
ease the analysis of these records, a conceptual schema for the common base will be
presented first, and then the additional schema for the STOP record will be analyzed later.
The following is the conceptual schema for the common accounting base:
Raw_Accounting: (date: date,

NAS-hostname: string,

userid: string,

NAS-port: string,

remote_phone_number: integer,
type: string,

Bringing an RDBMSto TACACS+ Page 13 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECEX33: Final Project December 3, 1998

NasUserName: string,
tgsk_id: integer,
timezone: string,
service: string)

The date attribute records the current system time when the transaction was
received, stored in a modified UNIX ctime format (sans timezone). Unfortunately, the
date cannot be considered as a key for this relation, because it is possible for the
TACACS+ server to process multiple requests at the same instant of time (the granularity
is only seconds). Furthermore, even if the granularity of the date attribute is increased, it
still cannot be a key — consider the possibility that multiple TACACS+ servers are using
the same RDBMS database for storing their accounting information. In this scenario,
multiple transactions could actually occur at the exact sametime.

The NAS-hosthame attribute is an identifier that specifies that NAS device that
generated the message. Although it does not have to be unique (it's possible for two
different NAS devices to have the same hostname), it typically is, because it's much
easier on the administrator. The userid attribute is a foreign key into the authentication
relation, which specifies the user that has initiated the current transaction. The NAS-port
attribute is a string that specifies which port (typically, a NAS will have to ability to
handle many simultaneous connections via different physical ports) the current session is
using.

The remote_phone number field is generated by the NAS, using CallerID.
Basically, the phone number that the client uses in order to connect to the NAS is logged.
This information can be used during the authentication process, in order to further

establish the user’s identity, and also for security auditing purposes, which is why it is

relevant to the accounting table. It should also be noted that in some instances (but not

Bringing an RDBMSto TACACS+ Page 14 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECEX33: Final Project December 3, 1998

all), the NAS will append a‘/’, followed by the number within the NAS that was dialed
(sans area code) in order to establish the connection. This functionality could be used in
order to share a PRI' line between multiple customers in the future, but is currently
unused by Ameritech today, so | will ignore it for the course of this assignment.

The type field contains one of three text drings. “ START’, “STOP”, or
“UPDATE”. The NasUserName contains the same data as the name field from the
authentication table. The redundency that this attribute causes will be further discussed in
the section dealing with the integrity constraints of this design.

The task_id attribute is a unique value (per NAS) assigned to every session that
the NAS starts. Thus, it is a very important value, because it can be used to ensure that
any given accounting records “go together” when considering the session as a whole.
However, this value alone cannot be considered a key for the relation, because multiple
accounting log entries will make reference to the same task id. For example, there will
be a START, STOP, and an arbitrary number of UPDATE records for every task id in
the system. However, | believe it might be feasible to combine the date, task id, and
NAS-hostname attributes in order to form a key for this relation. This key assumes that a
NAS will not process multiple requests for the same task_id in a given instant of time.
Unfortunately, during the implementation, this assertion didn’'t hold, so | decided to not
maintain a proper key for thisrelation.

Finally, the timezone attribute specifies the current timezone (such as UTC) for
the given date value. Why this isn't just included in the date attribute I'll never know.
The very last attribute specifies the service used, because it is possible for a user to

choose their type of service dynamically at connect time.

Bringing an RDBMSto TACACS+ Page 15 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECEX33: Final Project December 3, 1998

An accounting STOP record adds the following attribute-value pairs, for
statistical purposes:

Accounting_stop: (protocol: string,
addr: string,
disc-cause: integer,
disc-cause-ext: integer,
pre-bytes-in: integer,
pre-bytes-out: integer,
pre-paks-in: integer,
pre-paks-out: integer,
bytes in: integer,
bytes out: integer,
paks _in: integer,
paks _out: integer,
pre-session-time: integer,
elapsed_time: integer,
data-rate: integer)

The protocol attribute is a subset of a service, and is typically also detailed in the
authentication table. But, since the user may dynamically choose a service, it is also
possible that the protocol choice may be dynamic, so it must be logged in the event of a
STOP record. The addr attribute has the same properties as in the authorization table.
The disc-cause and disc-cause-ext attributes highlight the reasons as to why the session
was terminated (hence generating the STOP record). The value for the disc-cause
attribute will be a number, which represents a specific disconnection code. The possible
values for the disc-cause-ext attribute are extended off of the disc-cause attribute, and are
used for vendor-specific purposes.

Now, we need to break down the actual statistics that are reported. Any attribute
with a “pre-* modifier represents any transactions that occur before authentication
succeeds. Thus, everything else represents data that occurs during the course of the actual

connection. With that in mind, bytes-in and bytes-out refer to the number of input bytes

and output bytes, respectively, transferred between the NAS and the remote client. The

Bringing an RDBMSto TACACS+ Page 16 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECEX33: Final Project December 3, 1998

paks-in and paks-out attributes represent the number of data packets that are input and
output, respectively, during the course of the connection.

Similarly, the pre-session-time attribute represents the number of seconds that
transpire between the time when the connection is first initiated to when it is finally
authenticated. The elapsed-time attribute represents the duration of the connection, and is
useful for NAS devices that do not maintain any sort of internal time. Finally, although
the data-rate AV pair has been depreciated in more recent revisions of TACACSH, it is
still used by Ameritech in order to report the speed of the connection between the NAS
and the remote client.

SQL Implementation of the Raw_Accounting schema:

CREATE TABLE Raw_Accounting (| og_date DATE,
NAS_host name VARCHAR2(11),
userid VARCHAR2(11),
NAS port VARCHAR2(16),
r enot e_phone_nunber CHAR(10),
type VARCHAR2(6),
NasUser Name VARCHAR2(30),
task_i d | NTEGER
ti mezone VARCHAR2(3),
servi ce VARCHAR2(3),
prot ocol VARCHAR2(3),
addr VARCHAR2(15),
di sc_cause | NTEGER,
di sc_cause_ext | NTEGER,
pre_bytes_in | NTEGER,
pre_bytes_out | NTEGER
pre_paks_in | NTEGER
pre_paks_out | NTECER,
bytes_in | NTEGER,
byt es_out | NTEGER
paks_i n | NTECER
paks_out | NTEGER,
pre_session_time | NTEGER,
el apsed_ti me | NTEGER,
data_rate | NTECER ;

Calls Completed:
During the course of this design, allusions have been made to another accounting

table, used to store actual calls that the users completed. Now that the full schema for the

Raw_Accounting relation has been developed, it is possible to discuss this second

Bringing an RDBMSto TACACS+ Page 17 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECEX33: Final Project December 3, 1998

accounting relation. Basically, the Calls Completed relation contains attempts to
maintain all of the important attributes from a Raw_Accounting record. A presentation of
the exact schemawill clarify this point:

Calls_Completed (userid: string,
NAS-hostname: string,
NAS-port: string,
start_time: date,
stop_time: date,
duration: date,
tot-bytes-in: integer,
tot-bytes-out: integer,
tot-paks-in: integer,
tot-paks-out: integer)

Most of the fields in this table have already been explained, but a few are worth some
special attention. The start_time, stop_time, and duration fields all revolve around the
timing for the call. The start_time is culled directly from the START record, and the
stop_time is taken from the STOP record. The duration is actually the difference between
the aforementioned start and stop times.

SQL Implementation of the Calls Completed schema:

CREATE TABLE Cal | s_Conpl eted (userid VARCHAR2(11),
NAS_host name VARCHAR2(11),
NAS_port VARCHAR2(16),
start _ti me DATE,
stop_time DATE,
duration | NTEGER,
tot_bytes_in | NTEGER,
tot _bytes_out | NTECER,
tot _paks_in | NTECER,

t ot _paks_out | NTEGER,
PRI MARY KEY (callid));

Potential Queries revisited:
Now it is time, once again, to revisit the potential queries that were listed in the

data model description. These queries now need to be anayzed (and ordered) in terms of
their cost-of-execution. This involves considering the cost the basic query operations, and

then examining which operations will be necessary in each query. None of these queries

Bringing an RDBMSto TACACS+ Page 18 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECEX33: Final Project December 3, 1998

make use of the Cartesian product operator, and only a few of them use the join operator.
As before, the list of queries will be examined by relation, with the most costly queries
having the higher number.

Authentication:

1. Determine the total number of users, as well as the number of active users (those who
have a password other than the default).

2. Display a list of users that have at least one password set to “ tempassl” . This is the
default password, set when an account is first created. Thus, this query can be used to
show which users haven't used their accounts as of yet, which could lead to a
potential security issue.

3. Find all users that have both the special “admin” type attribute, as well as an
uninitialized password. Thisis avery big security hole.

4. Emulate an Authentication request — search for a user, and return his’her values.

Authorization:
5. Display users of type admin that have very permissive security settings.

6. Display a list of “secure” userid’s — those that have values for both the inacl, and
outacl attributes. Furthermore, their routing attribute should be set to false.

7. Display alist of all users who have very “limited” access — i.e. their timeout value is
less than or equal to 60 minutes.

8. Emulate an Authorization request — search for a user, and return his/her attributes.

Accounting:
9. Find the last login for every user, sorted in reverse order.

10. Display a“ call history” (complete list of calls) for a given user.
11. Display alisting of usersthat are logged in on agiven NAS for a given time period.

Integrity Constraints

The integrity constraints that can be enforced consist of key values and SQL
“CHECK” operations. Given this, we'll proceed to analyze the integrity constraints for
each of the three separate categories of data:

Authentication:
In this table, the userid field is a primary key. Each userid must be unique for a

customer, and since each customer has their own table, each userid must be unique within

atable. If userid’ s were not unique, it’s obvious to see how the TACACS+ server would

Bringing an RDBMSto TACACS+ Page 19 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECEX33: Final Project December 3, 1998

break. When an authentication request comes in, the server attempts to retrieve the proper
record from the proper authentication table, based upon the only attribute that it currently
has — the userid. Hence, if multiple records with the same userid existed, only the first
such record would ever be found, and users with subsequent records would be denied the
ability to login to the NAS.

The only interesting application of the SQL “ CHECK” functionality in this table
might be to make sure that every user record has at least one password configured. The
login, pap, chap, and global attributes are all used to specify passwords, but any one of
them may take on a NULL value, depending on the user requirements. However, in order
to authenticate with the NAS, at least one password is necessary. Thus, records that do
not contain at least one password should be allowed to enter the database. However, it is
also possible to rely on Ameritech’s password administration utility in order to enforce
this constraint. For the sake of performance, it makes sense to rely on the assumption that
we will be given valid data to work on (since it is al coming from a computer program,
and not directly from users). Thus, the CHECK operation will not be implemented.

Authorization:
The authorization tables require the use of the userid attribute, as specified in the

authentication table. Thus, the userid attribute in this table must be a foreign key with
respect to the userid attribute in the authentication table. Furthermore, it’s possible for a
user record to not need any special authorization parameters, so no SQL CHECKs can

accurately be performed on this data set.

Accounting:
This raw data in this category has no integrity constraints. Typical constraints,

such as the userid attribute, don’'t hold in this relation — because it’s possible for the

Bringing an RDBMSto TACACS+ Page 20 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECEX33: Final Project December 3, 1998

system to log userid’ s that don’t exist in the authentication table, for example. However,
when the call table is constructed, some integrity constraints will magically appear. For
any given call, the combination of the task id and NAS-hostname must be unique. Thus,
these two fields together can form a superkey for this relation. (Note that each NAS
generates it’s own task_id's, so thetask_id cannot be akey al by itself).

The issue of data redundency should be addressed when discussing the
Accounting relations, since it contains much redundant data. The raw_accounting table
records values that may repete those stored in the authentication table, for example (such
as the userid and name). At first glance, the inclusion of the NasUserName attribute
(which parallels the authentication name attribute) in the raw accounting information
seems very odd and redundant. However, upon further consideration, an argument for the
inclusion of this field appears. Basically, since each accounting record represents a
transaction that occurred at a fixed point and time, it is therefore necessary to capture the
corresponding name value for that given period of time. If this attribute were made
dynamic (basically, this data could be queried-for whenever it was needed), it could be
problematic if the user changes his’her name value. The same can be said for the
inclusion of the static userid field: if a userid were removed from the Authentication
table, we would still want to maintain the accounting information that the user generated.
Or even still, we want to be able to account for transactions where an end-user attempts

to use an userid that isn’t currently in the Authentication table.

Functional Dependencies

The functional dependencies in this database design appear to be weak, at best. It
seems that although the TACACS+ data contains many intrinsic functional dependencies,

it isn't really possible to deal with these from a database design perspective. In general,

Bringing an RDBMSto TACACS+ Page 21 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECEX33: Final Project December 3, 1998

there are only two different sorts of functional dependencies in this database: one exists
between the Authentication and Authorization relations, and the other is actually a class
of dependencies, that areintrinsic to the TACACS+ data.

The functional dependency that exists between the Authentication and
Authorization tables revolves around the sole attribute that they share — namely the
userid. | have connected these two relations together by making the userid a primary key
in the Authentication relation, and a foreign key in the Authorization relation. Thus, the
RDBMS will ensure that SQL DELETE or UPDATE datements don't violate the
integrity of matching records. Thus, from this dependency we realize two different
classes of anomalies: those that occur during unmatched insertions, and those that occur
when unmatched deletions are attempted.

The case of insertion anomalies can be thought of thusly: the only way that an
insertion anomaly can occur is if a record is inserted into the one relation, but not the
other. The RDMBS will allow the case that the record is inserted into the Authentication
relation but not the Authorization relation. However, it will block (with an error) the case
that when a record is inserted into Authorization before Authentication. In either case,
these possibilites can only come about due to programmer error, not user error.
Ameritech has developed a sort of “ Administration Client” , by which users are actively
maintained on the system. Thus, it is up to this client to insert the proper records in the
proper order. We'll assume that programmer error will not pose a very terrible problem
(if an error is encountered, it will be fixed).

Fortunately, the case of deletion anomalies can be handled more directly in SQL.

Since this type of anomaly occurs frequently in databases, SQL92 provides the “ON

Bringing an RDBMSto TACACS+ Page 22 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECEX33: Final Project December 3, 1998

DELETE CASCADE" construct, which can be applied to any relations that have a
foreign key. Basically, this construct alows the RDBMS to automatically clean-up
whenever a tuple is deleted from the specified relation. Thus, we can ensure, at the
RDBMS level, that no deletion anomalies will occur, thanks to this construct. This

construct modifies the previously stated Authorization SQL, so it now appears like this:

CREATE TABLE Aut hori zation (userid VARCHAR2(11),
i nacl | NTEGER,
out acl | NTEGER,
ti meout | NTEGER
i dletime | NTEGER,
addr VARCHAR2(15),
routi ng VARCHAR2(5),
rout e VARCHAR2(49),
FOREI GN KEY (userid) REFERENCES Aut henti cati on
ON DELETE CASCADE) ;

The final class of dependencies to be discussed revolves around those that are
intrinsic to the TACACS+ dataset. For example, several of the attributes in the
Accounting relation depend upon their respective values in the Authentication, or
Authorization relations. One such attribute is the NasUserName value, which is culled
directly from the name value in the Authentication relation. | was able to get a clear view
of these dependencies when | tried to implement my scripted faux data — many of the
valuesthat | generated didn’t make sense, because | didn’t reference previously generated
values for the other relations. However, beyond recognizing that these dependencies
exist, there isn't much that can be done to minimize them on the RDBMS level. They
seem to al be trivial dependencies (i.e. one value directly influences another), and as

such, don’t pose amajor problem to my database design.

Bringing an RDBMSto TACACS+ Page 23 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECEX33: Final Project December 3, 1998

Query Implementations

Authorization:
1. Emulate an Authentication request — search for a given userid, and return the values
found.

RA: o Authenticaion)

userid="given_userid’ (
TRC: {U U O Authenticaion OU userid ="given _ userid’}

SQL: SELECT *
FROM Aut henti cati on
WHERE userid = “given_userid”

2. Digplay a list of users (userid and name) that have at least one password set to the
default, “ tempassl” .

RA: T Iogin:‘cleartexttempass]]pap:‘cIeartexttempassl(AUthenticaion) DH
userid, . .
> nameBTchap:‘cleartexttempassﬂglobalz‘cIeartexttempassl(AUthentlcalon) H
TRC: 0O Hklogin ='cleartexttempas$l]
il ,
useri o ap ='cleartexttempassl]
EA A0 Authenticdéion DEIAD P P]
AAname

chap="cleartexttempass[] CH
global ='cleartexttempass$

SQL: SELECT A userid, A nane
FROM Aut hentication A
VWHERE login = ‘cleartext tenpassl
OR pap = ‘cleartext tenpassl’
OR chap = ‘cleartext tenmpassl’
OR gl obal = ‘cleartext tenpassl’;

3. Find all usersthat are administrators (i.e. their type attribute is set to “ admin”) and
have an uninitialized password.

Authenticaion)

nuserid,nam chap:’cleartextiempass]]gIobalz’cleartextiempassl(

RA : Iogin:’cleartextiempass]]pap:’cIeartexttempassl(AUthe nticaion) D EDH
U

Authenticaion)

type="admin" (

TRC: DAuserid, AnaméA D Authenticaion 0 Atype="admin’00
login ="cleartexttempass[]

(A pap ='cleartexttempas$l]]

L chapz’cleartexttempasEDD
%global ='cleartexttempass

MMOoOOoadaO

SQL: SELECT A userid, A nane
FROM Aut henti cation A

Bringing an RDBMSto TACACS+ Page 24 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECEX33: Final Project December 3, 1998

VHERE A type = ‘admn’
AND A. userid IN (

SELECT A2.userid

FROM Aut henti cati on A2

VHERE A2.login = ‘cleartext tenpassl’
OR A2.pap = ‘cleartext tenpassl
OR A2.chap = ‘cleartext tenpassl
OR A2.global = ‘cleartext tenpassl’)

4. Determine the total number of users, as well as the number of active users.

SQL: SELECT COUNT (Al) AS total, COUNT (A2) AS active
FROM Aut hentication Al, Authentication A2
WHERE A2.userid IN (
SELECT A3.userid
FROM Aut henti cation A3
VWHERE A3.login <> ‘cleartext tenpassl
OR A3.pap <> ‘cleartext tenpassl’
OR A3.chap <> ‘cleartext tenmpassl’
OR A3.global <> ‘cleartext tenpassl')

Authorization:
5. Emulate an Authorization request — search for a given userid, and return the values
found.

RA: o

userid="given_userid

(Authorizaton)
TRC: {U|U O Authorizaton OU userid =" given_userid]}
SQL: SELECT *

FROM Aut hori zati on
VWHERE userid = ‘given_userid’;

6. Display userid's that are “ secure” (have values for inacl and outacl attributes,
routing attribute that isfalse).

RA: nuserid (ainacl<>NULLDoutac|<>NULLDrouting:FALSE(AUthOrizaton))
TRC: [Z useridz O Authorizaton 0Z inacl <> NULL O
. O
%.outaclo NULL Orouting = FALSE 0

SQL: SELECT userid
FROM Aut hori zati on
WHERE inacl 1'S NOT NULL AND outacl IS NOT NULL
AND routing = ‘ FALSE ;

7. Display all userids who have a timeout value that is less than or equal to 60 minutes.

RA: T

userid

(a-timeouts3600('A‘Uth0ri Zaton))

TRC: {z.useridz 0 Authorizaton (1Z timeouts 3604

SQL: SELECT userid
FROM Aut hori zation

Bringing an RDBMSto TACACS+ Page 25 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECEX33: Final Project December 3, 1998

VWHERE ti meout <= 3600;

8. Display a list of administrators who have very permissive security settings.

RA: T UinacI:NULLDoutacI:NULLDrouting:TRUE(AUthorizaton))
UMMM b O e aami (AUhENLICEON)
TRC: CAD Authenticaion () Atype:’admin’%
%.useri _ 0 HZ.inacI = NULL D
O Z 0 Authorizaton 0 (0A) B il
f\name (JZ.outacl= NULL [m
u H Hiz.routing = TRUEH H

SQL: SELECT Z. userid, A nane
FROM Aut hori zation Z, Authentication A
VWHERE A userid = Z.userid
AND A. type = ‘admn’
AND (Z.inacl I'S NULL
OR Z.outacl I'S NULL
OR Z.routing = ‘' TRUE);

9. Query to find the “ worst” administrators, basically those that both have the default
password, and permissive authorization settings.

RA: T Uinacl:NULLDoutacI:NULLDrouting:TRUE(AUthorizaton)) "
e b0 O e aamin (AUthENtICEON)
Iogin:‘cleartextiempass]]pap:‘cIeartexttempassl(AUthenticaion) DEDH
nuserid,name chap:‘cleartextiempass]]gIobaI:‘cIeartextIempassl(AUthenticaion) D
yperagmn- (AUthenticaion)
TRC: [FAD Authenticaion [Atype:’admin’%
%.useri _ 0 HZ.inacI = NULL D
O Z 0 Authorizaton O (CA) il
f\name (JZ.outacl= NULL [m
u H Hiz.routing = TRUEH H

UAuserid,
EAname
. login ="cleartexttempassl]
[TA pap ='cleartexttempas$l]]
ay chapz’cleartexttempasEDD
gglobal ='cleartexttempass

O
AU Authenticaion [Atype="admin’l]

mOoOoOoOoom O

SQL: SELECT Z. userid, A nane
FROM Aut hori zation Z, Authentication A
VWHERE A userid = Z.userid

Bringing an RDBMSto TACACS+ Page 26 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECEX33: Final Project December 3, 1998

AND A. type = 'admn’
AND (Z.inacl 1S NULL
OR Z.outacl 1S NULL
OR Z.routing = 'TRUE)
| NTERSECT
SELECT A userid, A nane
FROM Aut hentication A
VHERE (A .type="admin’ AND A.login="cleartext tenpassl) OR
(A type="adnmin’ AND A pap='cleartext tenpassl) OR
(A type="adnmin’ AND A chap='cleartext tenpassl) OR
(A-type = "admin’ AND A. gl obal =" cl eartext tenpassl’);

Accounting:
10. Display a listing of users that are logged in on a given NASfor a given time period.

RA: H
userid,name (Ustop_time‘given_time‘ (Ca”S_ Com pleted)oo userid, (AUthenticaion)
start_ date name
stop_date

8

NAS-hostname’give_ NAS

%userid,namelog _date %type:‘start‘mlog _ date<’given_time'0 (RaW_ Accountlnd%

TRC:

0 w_A nting]

. H HQD Rg A ccou.t g

0 0 [Ruserid= Auserid[]

0 gER)aQ.type:’ STARTD
CAuserid . .

B 0 [Rlog_date<'given_timell
A.name O

. |AO Authenticsion O EF.NAS— hostname="given _NAS
% start_tim
[Calls_Completed]
m)[p.userid = Auserid[]
.stop_time>'given_timeQ
.NAS- hostname='given_NAS

g:.stop_time

o e O qE 1
HPEEREREEESSEE

O
el

H

SQL: SELECT A userid, A nane, Cstart_tinme, C stop_tinme
FROM Aut hentication A, Calls_Conpleted C
WHERE A userid = C. userid
AND C. stop_tinme > 'given_ting
AND C. NAS_host nanme = ’ gi ven_NAS
UNI ON
SELECT R userid, R NasUserNane, R |og_date, TO DATE(NULL)
FROM Raw_Accounting R
WHERE R type = ' START
AND | og_date < ’given_tine’
AND R NAS host nanme = ' gi ven_NAS ;

This query makes several assumptions that should be explained. Firstly, in joining
the Authentication and Calls Completed relations, it is assumed that the Authentication

table contains accurate names. Since this is only for user-presentation, so its significance

Bringing an RDBMSto TACACS+ Page 27 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECEX33: Final Project December 3, 1998

can be depreciated. The second assumption is made when records are gathered from the
Raw_Accounting table. The only START recordsthat arein said table are those that don’t
have a corresponding STOP — the legitimacy of their state, however, is unknown. Thus, it
is entirely likely that this query will list tuples where no call is currently in progress.
However, since a direct query cannot be performed on the NAS, there redly isn't any
way to know this information. Finally, this query assumes that the TACACS+ server logs
bad username login attempts as STOP records.

11. Find the last login for every user, sorted in reverse order.

RA: Hystart_timez‘start_ period'd (Calls_completedoo H

start_time<’stop_ period’
userid,nameNAS—hostnameD D

NAS-port,start_time [{Tuserid,name(AUthentiCaion) N

TRC: [T.userid,
EAname
LC.NAS- hostnamf€ I Calls_ Completed U
%:.NAS— port
B:.start_time
0 -
0 BAD Authenticaion

rC.userid= AuseridJ 0
CA) S o]
0 Start_time>'start_ period’
H start_time<’end_ period’

U
U
U

I

SQL: SELECT C.userid, A nane, C. NAS hostnane, C.NAS port,
C.start_tine
FROM Calls_Conpleted C, Authentication A
VWHERE C.start _time >= 'start_period
AND C. start_tinme < 'stop_period
AND C.userid = A userid
ORDER BY C.start_tine DESC,

12. Display a list of “ malformed” logdfile entries — unmatched START and STOP records
in the Raw_Accounting table.

RA: n-useri(:], NasUserNam, (Jtype:'STOF’D(type:'STARTD(SYSDATEIO g_ date)>20) (RaW_ Accountin d)
Nas-hostname

Nas- port,type

Bringing an RDBMSto TACACS+ Page 28 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECEX33: Final Project December 3, 1998

TRC: [Ruserid,
%.NasUserNare, EBD Raw_ Accountingl]

type (Rtype="STOP]
QQ.NAS— hostnamg{Rtype="STARTL(SYSDATE Rlog _date) > 20)
5 RNAS- port

mirHHEY S o

SQL: SELECT userid, NasUser Name, NAS hostnane, NAS port, type
FROM Raw_Accounti ng
VWHERE type = ' STOP

Due to problems with the Oracle SYSDATE function, as well as with comparing
data values of type “ DATE” in Oracle, the part of this query that dealt with the start
records wasn't included. For the life of me, | just couldn’t figure out how to drive the
SYSDATE function. In fact, during my travails, | manged to crash the SQL* Plus client
anumber of times before finally removing that aspect of the query.

13. Display a “ call history” (complete list of calls) for a given user.

RA: auserid:’given_userid’ (Ca”S_Completed

TRC: {C|C OCalls_ Completed]C.userid='given_ userid’}

SQL: SELECT *
FROM Cal | s_Conpl et ed
WHERE userid = ‘given_userid’

Query Efficiency

In order to explore the realm of query optimizations that might apply to my
design, it is best to divide the following discussion into two parts: One discussing the
Authentication and Authorization relations, the other dealing with the Accounting
relations. The scope of the queries that deal with Authentication and Authorization are
some of the more complex within this project (they actually use the join operation). For
the data in its current configuration, the RDBMS must search on practically all of the

attributes: the only ones that are never the subject of search are name, addr, and route.

Bringing an RDBMSto TACACS+ Page 29 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECEX33: Final Project December 3, 1998

Requiring this many search keys, to be used together in a variety of different
combinations, creates a difficult indexing environment.

The easiest queries to evaluate are those that don't require a join, and search
based upon one or two atributes. The next step up (in terms of complexity) is those
gueries that don’t require ajoin, but search based upon a large number of attributes. The
next complexity level is comprised of those queries that require the use of the join
operation, but only search based upon a limited number of attributes. Finally, the most
complex queries of this set are those that require the use of both the join operation and
many search keys.

The reasoning behind this heirarchy is somewhat obvious — the number of disk
operations is directly proportional to the number of records that must be read. This
number of records is proportional to the size (join leads to a greater size) and efficiency
of the index structure (related to the number of search keys). Thus, the no join operation
and few search keys are used (as in query number one, for example), then an efficient
hash-based index structure can achieve an O(num_results) performance, even when the
number of records range in the thousands.

However, it may be possible to ensure a more consistent level of performance
across queries by modifying the schema for the Authentication and Authorization
relations. In principal, two possible modifications exist: the Authentication table could be
optimized by folding identical passwords into a single global attribute, or the
Authentication and Authorization relations could be combined into one relation. When a
client attempts to login to the network, TACACS+ searches through the Authentication

information for a password, in order to match that with the user’s request. TACACS+ is

Bringing an RDBMSto TACACS+ Page 30 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECEX33: Final Project December 3, 1998

very flexible in its password-searching approach — it allows the password information to
be in a number of locations. It first searches the user’s authentication record, looking to
see if a specific password has been defined for the authentication method that they are
attempting. For example, if a user is attempting to start a PPP session via CHAP?
password authentication, the TACACS+ server will first attempt to find a chap attribute
in the user’s authentication record. If no such attribute is found, it will then check for the
global attribute. If this attribute isn’'t found, it will then search for a CHAP attribute in
any groups to which the user claims membership. Failing this, it will then search these
groups for a global attribute. Thus, it's possible to take advantage of this password-
searching heirarchy in order to reduce the number of attributes in the Authentication
relation.

Due to historical reasons, Ameritech’s current password-administration client
creates TACACS+ authentication records that contain the same password for the pap,
chap, login, and global fields. It then enforces this password duplicity across password
changes, so the state of these passwords seems to be fairly reliable. Thus, it is possible to
take a bit of a shortcut in the database design, by removing the pap, chap, and login
attributes, so that password authentication can rely solely on the global attribute. Thus,
any queries that attempted to determine if a user had an “ insecure” password would be
vastly simplified. Unfortunately, the problem with this optimization is that it unduly
limits future modifications to the password-administration client. For example, if
Ameritech decided to alow different pap and chap passwords in the future, not only
would the Authentication relation require modification, but so would most of the queries

that deal with this relation. Thus, a decision about future password flexibility needs to be

Bringing an RDBMSto TACACS+ Page 31 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECEX33: Final Project December 3, 1998

made in order to decide if this particular optimization should be made. For the purposes
of this design, the current structure will be left in place, in order to achieve the maximum
level of compatibility with Ameritech’s current TACACS+ infrastructure.

Another possible optimization concerns simply merging the Authentication and
Authorization relations. Currently, each relation doesn’'t contain a very large number of
attributes (especially if all of the duplicate passwords were to be removed from the
Authentication relation); thus it is feasible to smply merge them, in order to eliminate the
use of the join operation. Interestingly enough, the TACACS+ server was designed to
keep the authentication and authorization information together in the context of the same
configuration file. Thus, the separate relations that | have created for the purposes of this
database design are in fact somewhat artificial. Furthermore, it seems that in order to
effectively handle an authentication request, the TACACS+ server must access not only
the authentication information, but also the authorization information as well. If these
two sets of information were in the same relation, it would speed up the most frequently
used query. Consguently, it seems like this might be a very beneficial design
modification. Unfortunately, this change could severely limit the scalability of the
database. Attribute growth is a very definite possibility that must be taken into
consideration. For example, Ameritech is moving towards the use of VPDNS® for some of
their customers. In order to provide this functionality, many new attributes would be
needed in both the Authentication and Authorization relations. This is but one example of
the many possible modifications to the remote access services that would require the
addition of further attributes in either the Authentication or Authorization relations. Thus,

in terms of scalability, maintaining separate Authentication and Authorization tables

Bringing an RDBMSto TACACS+ Page 32 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECEX33: Final Project December 3, 1998

could be very beneficial to stable query performance. Under the “ unified” model, all
queries will suffer equally with the addition of each attribute. In the * split” model, only
the queries that depend on the affected relation may suffer a performance decrease. Y et
again, | seemed to be faced with another major design decision, between the scalability of
the number of simultaneous authentication requests that a TACACS+ server can handle
(avote for the unified model) and the performance of the data-analysis queries (a vote for
the split model). If this were to be implemented as areal project, | would recommend that
the unified model be used. But, for the purposes of this assignment, it is more interesting
to implement the split case, so my design will continue in this vein.

The final optimization that can be made is to eliminate nested queries whenever
possible. Nested queries require much more work on the part of the RDBMS, because it
must do the inner query first, and join the results of this query with the relations in the
outer query. Methods such as pipelining can be used by the RDBMS in order to speed
guery processing to a degree, but no method can get around the fact that a join must be
performed. Thus, for the sake of performance, it makes sense to rewrite these sorts of
gueries whenever possible, producing a non-nested equivalent. Consequently, two of the
previously stated queries, numbers three and four from Authentication, can be rewritten

in the following manner (and have been for my implementation):

3. SELECT A userid, A nane
FROM Aut hentication A
WHERE (A type "admin’ AND A.login = 'cleartext tenpassl’) OR

(A.type = "adnmin’ AND A pap = 'cleartext tenpassl’) CR
(A.type = "adnmin’ AND A chap = ’'cleartext tenpassl’) CR
(A.type = "adnmin’ AND A gl obal = ’'cleartext tenpassl');

4. SELECT CQGOUNT (*) AS num.users
FRQM Aut henti cati on;

SELECT GOUNT (A2.userid) AS active_users

FRCOMV Aut henti cati on A2

WHERE A2.login <> 'cleartext tenpassl
CR A2.pap <> 'cleartext tenpassl’
OR A2.chap <> ’'cleartext tenpassl’

Bringing an RDBMSto TACACS+ Page 33 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECEX33: Final Project December 3, 1998

CR A2.gl obal <> 'cleartext tenpassl’;

Moving on, the Accounting relation represents a special challenge, due to the
nature of the system-logging information that it stores. One very important performance-
affecting design decision has already been made — that of creating the Calls Completed
table, in order to maintain the implied state information from the Raw_Accounting
records. Many of the most important queries that Ameritech (and their customers) desire
can be performed on the Calls Completed table, saving the hassle of having to match up
the appropriate START, STOP, and UPDATE records every time. Beyond this decision,
however, further attention can be paid to both the Raw_Accounting and Calls_Completed
tables.

Of the many attributes contained in the Raw_Accounting relation, only the date,
task_id, and NAS-hostname attributes will ever be used as search keys. Furhtermore, this
relation is only used in three different queries (or transactions): one creates the
Calls_Completed table, the other two ssimply analyze the leftover records. Thus, under
these conditions, careful indexing can mitigate the relative difficulty of dealing with the
large size of the Raw_Accounting records. When generating the Calls Completed
relation, only the task_id and NAS-hostname attributes are required as search keys. The
other queries will only need to search based upon the date and type attributes. Thus, two
different hash-based index structures could be created to cover each of these situations, in
order to create the highest-performing environment possible.

The queries and transactions that run on the Calls Completed table are slightly
different in nature than those that have previously been examined. This relation doesn’t
contain any single attribute that can be treated as the key for the relation. Thus, several

attributes must be used together in order to determine unique tuples. These attributes

Bringing an RDBMSto TACACS+ Page 34 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECEX33: Final Project December 3, 1998

consist of the userid, NAS-hostname, date, and NAS-port. This means that every query
could potentially need to search based upon all of these attributes, plus whatever is
necessary in order to gain meaning from the query. Thus, in order to increase potential
guery performance, it might make sense to reduce the complexity of this aggregate key.

One method to reduce the number of attributes in the aggregate key would be to
import the task_id attribute from the Raw_Accounting relation. The nature of the task id
attribute is such that it is only required inorder to determine which combination of
START, STOP, and UPDATE records actually form a call. Thus, once al of the
components of the call have been located, the task_id is essentially irrelevant. My initial
design decision was to attempt to keep the size of the Calls_ Completed relation down by
only including those attributes from Raw_Accounting that were absolutely necessary.
Thus, the task _id has been left out of the Calls Completed relation. However, if it were
added, the aggregate key for the relation could be reduced to the combination of the NAS
hostname and task_id attributes. Thus, another integer field per record could be sacrificed
in order to reduce the number of attributes required in the aggragate key by half.

Another method possible method would be to smply generate a unique integer for
every record that is added to the Calls Completed table. The addition of a callid field
would add the same amount of data as the task id attribute, but have the additional
advantage becoming the sole primary key of the relation. Thus, with only a little more
PL/SQL and memory space overhead, a radically less complex key can be generated for
the Calls_Completed relation. To me, this seems to make good design sense, so the

Calls_Completed relation will now be implemented as follows:

CREATE TABLE Cal | s_Conpl eted (callid I NTEGER,
userid VARCHAR2(11),
NAS_host name VARCHAR2(11),
NAS port VARCHAR2(16),

Bringing an RDBMSto TACACS+ Page 35 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECEX33: Final Project December 3, 1998

start_tine DATE,
stop_time DATE,
duration | NTEGER,
tot_bytes_in | NTEGER,
tot _bytes_out | NTECER,
tot _paks_in | NTECER,

t ot _paks_out | NTEGER,
PRI MARY KEY (callid));

Other than the performance considerations that have been made, there aren't
many other aspects of the Accounting relations to analyze. None of these queries that
could possibly be implemented could use the join operation, thus no effort needs to be
expended optimizing for it. Thus, | am free to consider the implications that data growth
will have on these relations.

There is absolutely no doubt in my mind that this database design will have to
withstand quite a large amount of data. In fact, Ameritech currently has one customer that
has over 4,000 user accounts. Not only does this translate to large Authentication and
Authorization relations, but also to massive Accounting relations (the user activity in this
sort of scenario could be rather high). Furthermore, as Ameritech expands this service
(partly due to the ease at which an RDBMS solution allows them to add customers), the
amount of data that must be handled will grow in multiple ways. Not only will more user
accounts be necessary, but also the pace of Internet technology will assure the fact that
the number of attributes required in all of the relations will increase. Furthermore, as
Ameritech’s customer base increases, the number of access servers that they will employ
will increase. Thus, the system will be capable of handling more users simultaneously,
and the number of Accounting records that enter the system will grow exponentially
when compared to the number of users added. Fortunately, | feel that my design,

combined with a well-maintained Oracle Database® will not only be able to handle the

Bringing an RDBMSto TACACS+ Page 36 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECEX33: Final Project December 3, 1998

challenge, but will also afford better scalability than the current solution as data needs
increase.

The current text-file based TACACS+ software implements a memory-based
hashing algorithm in order to search for Authentication records efficiently. When both the
size and number of the records is small, this algorithm will provide very efficient
performance — probably better than an RDBMS. However, as the data grows both in size
and in number, this algorithm will continue to require additional memory. It is at this
point, where the RDBMS will be able to take the performance lead. Since the database
software has been designed in order to efficiently handle large sets of data, it should be
able to outpace the rather simplistic hashing algorithm used in TACACS+.

Finally, beyond simple data growth, the possibility of changing requirements for
the database also needs to be discussed. It is quite possible that different queries will be
needed down the road, as customers ask for more statistics on their equipment, and as
Ameritech expands the service. However, the nature of these relations is such that these
new types of queries will be relatively bounded in what they can do. For example, there
won't ever be any joins to deal with when concerning the Accounting information. Unless
some radical, fundamental shift in the database schema is made, all of the Accounting
gueries will be contained to either the Calls Completed or Raw_Accounting tables (or
sometimes both, but not in joined fashion). Thus, | feel that my current design is sound

enough to deal with the inevitable growth of the functionality that it will have to support.

Transactions

Beyond simple queries, the RDBMS needs to support many other functions in
order to handle every aspect of the TACACS+ environment. All of these functions can be

considered as transactions, either requiring either special SQL commands, or full-blown

Bringing an RDBMSto TACACS+ Page 37 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECEX33: Final Project December 3, 1998

programs in order to process. Unfortunately, problems encountered with the Oracle

database in the lab, as well as time constraints have limited what | have been able to

accomplish. Thus, | will divide my discussion of transactions into two categories. those

that could be implemented, and the one that | did implement. For those transactions that

were left unimplemented, some basic description will be provided, as well as a rough

examination of possible implementations. Finally, a detailed discussion will be given to

the transaction that was implemented.

Authentication:

1.

2.

The database needs to support the addition, deletion, and modification of users.
Currently, this is implemented through the aforementioned Administration Client.
The TACACS+ server has been extended to also accept administration packets from
this software program. Hence, the current implementation involves users connecting
to the TACACS+ server, and sending their modifications over. The TACACS+ server
then writes these changes to its local files, and reloads them into memory (if
necessar). Thus, the easiest thing to do would be to keep the same mechanism, but
modify the TACACS+ server to use the appropriate SQL commands in order to make
these modifications directly on the database. However, another possibility would be
to depreciate the use of the administration client in order to make use of some sort of
graphical front-end to the database itself. There are many ramifications to this
approach, but it would definitely be worth exploring in detail.

Another useful feature would be some sort of transaction that supports password
aging. In the current TACACS+ sever, this feature is left unimplemented.
Consequently, thanks to the ease with which the database can manipulate user-

records, we sould be able to easly add this functionalit. The most likely

Bringing an RDBMSto TACACS+ Page 38 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECEX33: Final Project December 3, 1998

implementation of this feature would be some sort of script that runs through the data
on aregular schedule. It would compare the last update time for each user record to a
certain threshold. If exceeded, it would remove the current password. Consequently,
the next time that the user attempted to login, they would be required to enter a new

password.

Authorization:

3.

For thisrelation, all that is necessary is a method in order to modify user records. This
would most likely be implemented alongside the corresponding Authentication

transaction.

Accounting:

4.

5.

Another useful statistic is the number of calls per port (this could either be done over
a certain span of time, or as a running total). The underlying purpose is to look for
ports that are either underutilized (they could be broken), or over-utilized (could
require expansion of the NAS). This is currently implemented via a perl script that
parses the accounting information, matching START and STOP records, and
computing the necessary statistics. The information that it collects is exported as a
collection of commarseparated records, which are then imported into Microsoft Excel.
It is hoped that some of the vendor-supplied tools might afford a better method to
both accrue and display the data, so that it might be more possible to gain a higher
level of “interactivity” with the data.

A tranasaction to determine the number of simultaneous calls handled by the NAS in
an hour. This transaction is important, because customers pay Ameritech per port, and
they need to see that they are getting their money’ s worth. This could be implemented

via a script that loops through every hour in the Calls Completed, tabulation ghte

Bringing an RDBMSto TACACS+ Page 39 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECEX33: Final Project December 3, 1998

number of calls that are “ open” for that hour. A call can be deemed “ open” if either
the starting time occurs within the given hour, or if the duration of the call moves into
the given hour. The final step in this process would again be the user presentation.
Currently, this is done by the aforementioned Excel-method, so it probably makes
sense to implement this transaction alongside the former transaction.

6. A transaction to tabulate a number of statistics on the user-level. Basically, it is
important to see things such as the number of calls per user and the total time that
said user has spent logged into the NAS, as well as the total amount of data that they
have sent/received. Collapsing all of this information into one place makes it easier to
keep tabs on what each user is doing with the system. An extension of this transaction
would be to maintain some sort of history, and “flag” users that demonstrate
uncharacteristic behavior (this might indicate that a “ malicious’ third party has
gained control of this particular user account).

7. Another useful transaction would be to generate a histogram of call durations. This
transaction would display the call durations based upon a set of predfined categories.
Each category would represent a different length of time, such as 0 — 1 hours, 1 — 2
hours, etc.

Generation of “Calls Completed”:
As has been previously discussed, the notion of a Calls Completed relation

simplifies greatly a number of problems that are encountered when dealing with the
Accounting data. Thus, in order to complete this assignment, it was necessary to
implement a transaction that generates the Calls Completed table, based upon records

contained in the Raw_Accounting table. The specific implementation of this transaction

Bringing an RDBMSto TACACS+ Page 40 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECEX33: Final Project December 3, 1998

will follow in “ Appendix B” , and the current discussion will be limited to a discussion of
this implementation.

In general, this transaction did prove itself to be invaluable. As witnessed, the
implementation of many a query was greatly simplified by the presence of a
Calls_Completed table. Unfortunately, my implementation of this transaction did have
some problems. Basically, the nested loop structure of this script causes an undue amount
of computation on the RDBMS end. As such, when given roughly four thousand
Raw_Accounting records, this transaction required over half-an-hour to run to completion
inthe lab. Thislevel of performance is unacceptable, if this transaction isto be run agains
the Raw_Accounting table at regular intervals (as is expected — many of the queries
reguire as up-to-date information from the Calls_Completed relation as is feasible). Thus,
if this project were to be implemented in the “real world”, much effort would have to be

put into adesign that performs better.

Implementation

The discussion surrounding the implementation of my design will be broken up
across several appendicies, due to the lengthy nature of some the inputs and outputs.
Thus, this discussion will deal with the *“problems encountered” during the
implementation of my design.

The first problem that | encountered revolved around the sample data. It was
impossible for me to get “real world” data, so | implemented a perl script in order to
generate some faux data. A full discussion of this solution appears in Appendix A.

The second, and much more difficult hurdle, was the actual RDBMS that | used. |
wanted to use an Oracle database for this assignment, because Oracle currently has quite

abit of support within Ameritech. Furhtermore, | also know that Oracle runs just great on

Bringing an RDBMSto TACACS+ Page 41 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECEX33: Final Project December 3, 1998

Sun Microsystem’s Solaris operating system. Solaris is the current operating platform for
Ameritech’s current TACACS+ servers, thus, any RDBMS solution that gets
implemented must fully support this environment.

That choice made, the only Oracle solution to which | had access was in the
Jennings Computer Lab, running on Microsoft Windows NT. Needless to say, after this
experience, | am not afirm believer in Oracle version 7.x for NT. To be fair, many of the
problems that | encountered were not the fault of Oracle or Microsoft. The Jennings lab
as of late 1998 is understaffed and under funded. Thus, the physical hardware backing up
the Oracle server wasn't exactly the greatest. It wasn't working when | wanted to start on
my implementation, so | had to find an administrator, and have him reboot the server a
number of times until it allowed meto login.

Once | was connected to the server, | was receiving transient “ Shared Memory
Allocation” errors when importing all of my data into the database. Unloading and
reloading the data several times seemed to clear up these problems.

The next set of problems that | encountered revolved around Oracle's built-in
functions. In particular, 1 was interested in several functions that dealt with the DATE
datatype. Unfortunately, | was never able to decipher the documentation to the point that
| actually fully understood how to utilise these functions. Furhtermore, as | attempted to
explore these functions on my own (using the given examples asa guide), | was able to
confuse the RDBMS, to the point that no single query (no matter how simple) would run.
Basically, every command generated some form of internal error in the database. It was at
this point that the SQL* Plus front-end crashed, prompting me to re-login. Upon doing so,

everything appeared to be well, but | was sill unable to use any of the built-in functions.

Bringing an RDBMSto TACACS+ Page 42 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECEX33: Final Project December 3, 1998

| ended up crashing SQL*Plus a few more times before | finally decided to give up on
these functions.
Nevertheless, all of the SQL that | used, as well as the output that it generated,

will be presented in a series of appendicies at the end of this report.

Conclusion

In order to conclude the discussion of this database design, some thought needs to
be given to its possible commercial-grade implementation. In order to implement this
database, Ameritech would have to carefully consider all of the costs involved, and weigh
them against the perceived value of the database implementation. The costs in moving to
the database model involve programmer time, as well as the purchase of additional
hardware and software. Once this solution has been implemented, it could add additional
day-to-day costs, in the form of an increased need to keep well-trained staff in order to
support this solution.

Furthermore, much of the increased functionality that the RDBMS offers isn’t
very concrete, which makes this solution a “hard sell”. For example, the possibility of
increased reliability and scalability afforded by the Authentication and Authorization
relations won't be visible until the current solution breaks. Thus, the data partitioning
features of the RDBMS (the fact that it can allow the data from multiple customers to be
stored on one machine) must be emphasized instead. But all told, less motivation exists
for using the RDBMS to store the authentication and authorization.

The RDBMS offeres much more tangible functionality when it comes to the
accounting information, however. There are many problems and unimplemented features
with the data reporting methodolgies that are currently in use. With the RDBMS,

however, many of these problems can be easily and efficiently solved.

Bringing an RDBMSto TACACS+ Page 43 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECEX33: Final Project December 3, 1998

Thus, it is my final recommendation that the accounting aspects of this design be
given a serious look. It would be a simpler task to sart using a database for this data, and
if the RDBMS proved itself, then it would make more sense to apply it to the other two

areas aswell.

Bringing an RDBMSto TACACS+ Page 44 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECEX433: Final Project Appendicies December 3, 1998

 Appendix A: Sample Data
Unfortunately, | was not able to use “ live” customer data from Ameritech in the

database that | created for this project. Many of the attributes in the data set contain
highly sensitive values (such as passwords, userid’s, and phone numbers, to name a few),
and thus, it was clearly impossible for me to include this data in a silly report. So, |
created a fairly effective mechanism by which my own, faux data could be created.
Basically, | wrote an approximately 700-line perl script that produces all of the SQL
necessary in order to insert an arbitrary number of Authentication, Authorization, and
Accounting records into my database. | attempted to make my faux data adhere to the
actual data as much as possible, and although some of the intrinsic dependcies don’t
make sense, on a superficial level the data looks grest.

It is too much to attempt to include all of the data that | generated in this
document. The Accounting information alone amounted to amost a megabyte of text.

Thus, | will simply include the perl script, and make the actual data available externally.

#! [/ usr /Il ocal / bin/ perl

T T S B R S R S S R S R R T 1
Andy Reitz reitz@es. cwu. edu
ECES 433 Final Project Decenber 8, 1998
T T S B R S T R S S R S R R T
The purpose of this 'generate _data’ script is to produce a very realistic
set of sanple data for ny Database Design Project. In particular, this
programw || output three ".sql" files, each one containing a nunber of
records expressed in SQ92 format. \Whenever possible, data has been
generated that ’'nakes sense’, or at |east, approxi mates real-world data

As an aside, it was harder to develop this programthat | initially thought
that it would be -- the total programming tine was about nine (9) hours

But, this was one of the nore 'fun’ aspects of this project, so it was

well worth the effort

B R S R R R
Internal Script-configuration el enments.

HHFHFHHFHHRHR

use strict; # Keeps me honest.

T S B R S R S S R S R R T 1
d obal Configuration Section
ny ($NUM DATA) = 500; # Nunber of records to generate

Qutput fil enanes.
ny ($aut hen_fn) = "authentication_data.sqgl"

Appendicies Page 45 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECEX433: Final Project Appendicies December 3, 1998

nmy ($aut hor_fn) = "authorization_data.sql";
ny ($acct_fn) = "accounting_data.sql";

T R B S B S R S R S S R S R R T
d obal Variable Declarations.

ny ($counter);

ny ($routing, $route);

ny ($Suserid);

my ($passwd) ;

ny ($usernane);

ny (@serids, @sernanes);

ny ($inacl, $outacl, $tineout, $idletine);

B L L L L T T T T T T T T T T F TR TR ra T 1
Begin Main Program

W' ||l use this seed throughout the program
srand (tinme());

#
The two 'if’' statenments that follow check to see if a file exists, and if it
doesn’t, they will attenpt to open themfor witing.
#
if (-e $authen_fn)

{

print "Error: the Authentication output file, \"$authen_fn\", already
exists!\n";

exit (3);

el se

{
if ('open (AUTHEN, "> S$authen_fn"))
{
print "Error: Couldn't open the Authentication output file,
\"$aut hen_fn\", for witing. Reason: $!'\n";

exit (4);
}
}
if (-e $author_fn)
print "Error: the Authorization output file, \"$author_fn\", already
exists!\n";
exit (5);
}

el se

{
if (!open (AUTHOR "> S$author_fn"))
{
print "Error: Couldn’t open the Authorization output file,
\"$aut hor _fn\", for witing. Reason: $!\n";
exit (6);

This juicy little "for’ |oop generates both the ’Authentication and

"Aut hori zation’ datafiles. Basically, for every tuple that is generated in
the "Authentication’ file, an co-inciding tuple (using the same userid)

is generated for the ’'Authorization’ datafile. Al of the userid s and
usernane’s are stored into arrays, for |ater use.

STHHFHHHFHFH

or ($counter = 0; $counter < $NUM DATA; S$counter ++)

Appendicies Page 46 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECEX433: Final Project Appendicies December 3, 1998

{

print AUTHEN "1 NSERT | NTO Aut henti cati on VALUES (";
$userid = create_userid();

$userid .= $counter;

push @serids, S$userid;

$usernane = create_nane();

push @sernanes, $usernane;

print AUTHEN "’ $userid , $usernane, ";
$passwd = create_passwd();

print AUTHEN "$passwd, 'tenplate’, $passwd, $passwd, “;
print AUTHEN create_auth_type(), ", ";
print AUTHEN "$passwd)\;\n";

print AUTHOR "1 NSERT | NTO Aut hori zation VALUES (";

print AUTHOR "’ $userid , ";

($inacl, $outacl, $tinmeout, $Sidletinme) = create_authz_ints();
print AUTHOR "$i nacl, S$outacl, $tineout, S$idletine, ";

print AUTHOR create_addr(0), ", ";

($routing, $route) = create_routing();
print AUTHOR "$routing, $route);\n";

}

cl ose (AUTHEN) ;
cl ose (AUTHOR);

#

Spit-out the accounting information.

#

create_accounting (\ @serids, \@sernanes, $acct_fn);

End of Main Program

BB T R A R T T R A B R T R T i R A B R T I R R R T

BB T R A B R T T R A B R T R T i R T R T i A R R T

3+

Begi n Subrouti nes.

This subroutine returns a pretty funky userid. It’s basically 6 random

| ower-case letters thrown together. Generating neani ngful userid s (based

nunber to each, in order to keep themunique. So, in essence, these letters

#

#

#

of f of the name), would have been much nore difficult. W' |l append a unique
#

are just for effect.

#

s

ub create_userid {

ny (@har_ary) =('a .. 'z2');
ny ($counter);
ny ($ret_userid);

for ($counter = 0; $counter < 5; S$counter++)
{
$ret_userid .= $char_ary[rand($#char_ary) + 1];
}

return ($ret_userid);

} # End create_userid().

Appendicies Page 47 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECEX433: Final Project Appendicies December 3, 1998

#

This routine returns a an 8-character-1ong password, conposed of pretty
random characters 60% of the time. The other 40% of the time, it just

returns the default "tenpassl" password.

#

sub create_passwd {

rry (@har—ary) = (l Al . il Zl , il al . il Zl , il 1| . il 9| , il ! il , il _l) ;
ny ($counter);
ny ($ret_passwd) = "'cleartext ";

if (rand > 0.3)
{

for ($counter = 0; S$counter < 8; S$counter++)

$ret _passwd .= $char_ary[rand($#char_ary) + 1];

}
$ret_passwd .= '\’
}
el se
$ret _passwd .= "tenpassl'";
}

return ($ret_passwd);

} # End create_passwd().

#

This subroutine creates a random person-nane. It requires the use of two
input files, "first.dat" (containing a list of first nanes), and

"last.dat" (containing a list of last nanes). It will pick a random word
fromeach file, as well as a randomniddle initial (only 20% of the tine),
and return all of the data in the "Last_Name, First_Nane Mddle_lnitial"
format.

#
S

ub create_nane {

ny (@n, @n);
ny (@nitials) = ("A .. 'Z);
ny ($m);

ny ($ret _In, $ret_fn);

if (lopen (FIRST, "first.dat"))

{
print "Error: Couldn’t open input file \"first.dat\". Reason

$I\n";
exit (1);
}

if (!open (LAST, "last.dat"))
{

print "Error: Couldn't open input file \"last.dat\". Reason $!'\n";

exit (2);
@n = <FI RST>;
@n = <LAST>;

if (rand > 0.6)
{

$m = $initials[rand ($#initials) + 1];
}

Appendicies Page 48 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECEX433: Final Project Appendicies December 3, 1998

$ret_In = $In[rand ($#l n) + 1];
chop ($ret_In);

$ret_fn = $fn[rand ($#fn) + 1];
chop ($ret_fn);

return ("' $ret_In, $ret_fn $m’'");
} # End create_nane().

#

This subroutine returns the string "adm n" 10% of the time.
#

sub create_auth_type {

if (rand > 0.9)
{

return (" admin ");

}

el se

{
return ("NULL");
}

} # End create_aut h_type().
#
This subroutine creates a random | P address, 20% of the time.
gub create_addr {
ny ($dorand) = shift (@);
ny ($octl, $oct2, $oct3, $oct4);

if ($dorand || (rand > 0.8))
{

$octl = int (rand (255));
$oct2 = int (rand (255));
$oct3 = int (rand (255));
$oct4 = int (rand (255));
}

if (defined ($octl))

return ("’ $oct 1. $oct 2. $oct 3. $oct 4’ ") ;
}

{
return ("NULL");
}

} # End create_addr().

el se

#
This subroutine returns two values -- the 'routing’ attribute, followed

by the 'route’ attribute. If we decide that 'routing should be FALSE (as
it will be 60%of the tine), then we’ll just return *NULL' for the 'route’
attribute. Otherwise, we'll actually generate a randomroute statement.

#

S

ub create_routing {

Appendicies Page 49 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECE$A33: Final Project Appendicies

December 3, 1998

ny ($o0l, $02, $03, $o04);

if (rand > 0.4)
return ("’ FALSE ", "NULL");
}

el se

Creating a valid route is very difficult, and since the
point of this is just to get sone data flowin’, |’ m not
going to try very hard. The TACACS+ spec says that it

<dst _address> <mask> <routing_addr>

So, in order to nake things easier,

{

#

#

#

#

expects 'route’ attributes in the form of:
#

#

#

#

everything is 'class C masked.

I”mgoing to assune that

#

$0l = int (rand (255));

$02 = int (rand (255));

$03 = int (rand (255));

$04 = int (rand (255));

return (" TRUE ", "’ $0l. $02. $03. 0 255. 255. 255.0

$01. $02. $03. $04' ") ;
}

} # End create_routing().

#

This subroutine creates the four integers necessary for an Authorization

record.
#
sub create_authz_ints {

ny ($inacl, $outacl, $tineout, $idletine);

#
Choose the access |ist val ues.
#
if (rand > 0.6)
{
$inacl = int (rand (456));
$outacl = int (rand (456));
}
el se
{
$i nacl = "NULL";
$out acl = "NULL";
}
#
Choose the tinmeout paraneter. W'|l allowit to range fromzero to
1200 minutes (20 hours).
#
if (rand > 0.8)
{
$timeout = 60 * int (rand (1200));
}
el se
{
$timeout = "NULL";
Appendicies Page 50 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECEX433: Final Project Appendicies December 3, 1998

}
#
Now, choose the idle tineout.
?f (rand > 0.7)
{$idletima =60 * int (rand (10));
el se }
?Si dletime = "NULL";

return ($inacl, $outacl, $tineout, $idletine);

—

End create_authz_ints().

Chboy, what fun here. This function attenpts to generate a whole nmess of
"Raw_Accounting’ records. Wiereas the previous two relations had a one-to-one
relationship, this doesn’t hold for Accounting (think about it -- people |ike
to login nore than once!). So, this function handles all of that, in the
manner

that | best saw fit. Note that the dependencies between the Accounting
records

and the other two relations aren’t very accurate -- with the exception of the
userids/nanes, everything else is randomy independent. Realistically, the
only

way to have gotten better data would have been to setup a sanple TACACS+
server,

and generate it that way.

#

sub create_accounting {

HHHH B

#
Gather the paraneters fromthe parent. Note, |’musing variable
referencing here in order to pass two arrays. Werd.

#

ny ($userids) = shift (@);

ny ($usernames) = shift (@);

ny ($acct_fn) = shift (@);

ny ($userid); # The current userid.

ny ($user_cnt) = 0; # Counter; Steps through userid array.
ny ($host); # The current NAS- host nane

nmy (@ask_id) = (0, 0); # Array of task_id' s, one-per-NAS
ny ($type); # START, STOP, or BOTH?

Do that funky file stuff again
if (-e $acct_fn)

print "Error: the Accounting output file, \"$acct_fn\", already
exists!\n";

exit (7);

}

el se
{
if ('open (ACCT, "> $acct_fn"))
{
print "Error: Couldn’t open the Accounting output file

\"$acct_fn\", for witing. Reason: $!'\n"
exit (8);

Appendicies Page 51 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECE$A33: Final Project Appendicies

December 3, 1998

}
}
#
W start off by generating the 'good data -- i.e. valid START/ STOP
pairs.
#
For every userid, we have to generate a number of unique (?)
accounting el enents:
NAS- host nane - W' Il assune that each person sticks to one NAS.
renot e_phone_nunber - Assune that they call from one |ocation.
#
foreach $userid (@userids)
{
if (rand > 0.5)
{
$host = "IL_as2516";
$task_id[0] = emit_acct_rec (@buserids[$user_cnt],
@user nanes[$user _cnt], 'BOTH , $task_id[0], $host);
}
el se
{
$host = "OH as5200";
$task_id[1l] = emit_acct_rec (@buserids[$user_cnt],
@buser nanes[$user_cnt], 'BOTH , $task_id[1], $host);

}

$user _cnt ++;
} # foreach

Now, generate some bogus
for ($user_cnt

{
What type shall

= 0; S$user_cnt < ($NUM DATA * 0.1);

START/ STOP records.
$user _cnt ++)

we make?
if (rand > 0.5)
{
$type = ' START
}
el se
{
$type = ' STOP ;
}
Make it so!
if (rand > 0.5)
{
$host = "IL_as2516";
$task_id[0] = emit_acct_rec (@buserids[$user_cnt],
@buser nanes[$user _cnt], $type, $task_id[0], $host);
el se
{
$host = "OH as5200";
$task_id[1l] = emit_acct_rec (@buserids[$user_cnt],
@buser nanes[$user _cnt], $type, $task_id[1l], $host);
} # for
cl ose (ACCT);
} # End create_accounting().
#
Appendicies Page 52 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECEX433: Final Project Appendicies December 3, 1998

This function attmepts to enit a variabl e nunber of START/ STCP records,
based upon it’'s given paraneters. It's all quite a hack, really (but

then again, so is /perl/, if you think about it).

#

sub emt_acct_rec {

Start off by getting all of our paraneters.

Bul k variables for STOP record.
($pre_bytes_in, $pre_bytes_out, $pre_paks_in, $pre_paks_out);
($bytes_in, $bytes out, $paks_in, $paks_out);
($pre_session_tinme, $el apsed_tine);

ny ($cur_userid) = shift (@);

ny ($cur_usernane) = shift (@);

ny ($passed_type) = shift (@);

ny ($task_id) = shift (@);

ny ($cur_host) = shift (@);

my ($cur_ph); # Phone Nunber .

ny ($cur_port); # NAS- port.

ny ($cur_type); # START/ STOP/ et c.

ny ($start_tine, $stop_tine); # Starting and Stopping tines.

ny ($numrun); # Counter; nunber of outputs to do.
ny ($run_count) = O; # Counter; current output being made.
#

ny

ny

ny

#

This whol e notion of START/STOP/BOTH is pretty hacki sh, but it
works (and you can’t argue with that).
#
if ($passed_type eq "BOTH")
{

Okay, we’'re doing the 'real thing . Generate a random
nunber of START/ STOP pairs.

$cur _type = ' START ;

$numrun = int (rand (10));

if ($numrun == 0)

{$num_run = 1;
}
}
el se
{

Faux-record, only do it once.
$cur _type = $passed_type;
$numrun = 1;

}

Get our guy’s phone nunber.
$cur _ph = gen_phone_nunber ($cur_host);

#

This is a pretty fun loop. It generates all of the data that is unique
per START/STCOP pair, and then emits the pair. It of course will only
emit one record if it wasn't given 'both’ to start wth.

#

for ($run_count = 0; $run_count < $numrun; $run_count ++)

Now, we have to generate START/ STOP pairs. Uni que
to each pair will be:

The start/stop times (duh)

NAS-port - we’ll assune it differs

task_id - counter; unique to a NAS.

HHHFHHHF

Appendicies Page 53 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECEX433: Final Project Appendicies December 3, 1998

#
($start_tine, $stop_tinme) = gen_dates();

$cur_port = gen_port ($cur_host);

Emit a beginning -- could be all if we’re ' START .

print ACCT "INSERT | NTO Raw_Accounti ng VALUES (";

print ACCT "'$start_time’, '$cur_host’, '$cur_userid,
"$cur _port’, $cur_ph, 'S$cur_type’', $cur_usernane, ";

print ACCT "$task_id, 'UTC, 'PPP ";

if ($passed_type eq "BOTH')
{

$cur _type = ' STOP ;

finish off START, start again.

print ACCT ", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL)\;\n";

print ACCT "INSERT | NTO Raw_Accounti ng VALUES (";

print ACCT "'$stop_tinme’, '$cur_host’, *$cur_userid,
"$cur _port’, $cur_ph, 'S$Scur_type’', $cur_usernane, ";

print ACCT "$task_id, 'UTC, 'PPP ";

}
#
Cenerate the ' STOP portion of the record, if necessary.
#
if ($cur_type eq "STOP")
{
1t’s true, we'll always get an addr.
print ACCT ", '"IP, ", create_addr (1), ", ";

Di sconnection will always be same.
print ACCT "1, 1045, ";

1 really hate all of the stupid counters.
$pre_bytes_in = int (rand (200));
$pre_bytes out = int (rand (200));
$pre_paks_in = int (rand (12));
$pre_paks_out = int (rand (12));

$bytes_in = int (rand (1000000000));

$bytes_out = int (rand (1000000000));

$paks_in = int ($bytes_in / 1500) + int (rand (230));
$paks_out = int ($bytes_out / 1500) + int (rand (230));

$pre_session_tine = int (rand (20));
$el apsed_time = int (rand (72000));

print ACCT "$pre_bytes_in, $pre_bytes out, $pre_paks_in,
$pre_paks_out, ";

print ACCT "$bytes_in, $bytes out, $paks_in, $paks_out, ";

print ACCT "$pre_session_tine, $el apsed_tine, ";

print ACCT "56000)\;\n";

$cur _type = ' START ;

}

el se
{
Wap-up the dangling START.
print ACCT ", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL)\;\n";
}

W' Il need this to be different next tine ’'round.

Appendicies Page 54 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECE$A33: Final Project Appendicies

December 3, 1998

—

$t ask_i d++;

} # for

Send our updated $task_id back to nomma.
return ($task_id);

End emit_acct_rec().

This subroutine conputes that starting tine and stopping tine for a call,

and returns said val ues.
From t here,

at different tines.

| took a quick spin of the Oracle 7 On-Line docunentation,

the format for their

Al

" dat e’

records wll
they can end at

start on the sane day,

but

maxi mum 20 hours | ater.

and it seens that

datatype is something like this:

DD- MON- YYYY 12: 00: 00a. m

Now, |

"aam’/'p.m is only for

take tinme in the 24-hour fornmat.
code.

And 1’ d just

amount of time that
two ot her ways first,

don’t /exactly/ support that format. |
humans,

not conputers.
If it doesn't,

So,
"1

it took to craft this function.

like to say that this bit of code doesn’t

think that the notion of

"Il see if Oracle wll
be back to edit this

represent the
coded it about

that just didn't

pan out.

This is nice and tight,

t hough, and |

O HHFHHFHFEHFFHHEHFHFFEFFEFEHERTR

ub gen_dates {

my ($now,
my (@n,
ny (
ny (

"Sep', 'Cot,

HHHHHH

t hi nk

$l ater);

@l);
$start,
@ront hs)

"Nov”

$stop) ;
= (' Jan’,
lmcl);

"Feb’, 'Mar’, ' Apr’,

Now is really later (by no nmore than 10 hours).
produces tinmes that are actually 'ahead

have no idea why this happens.

$now = time();
$now -= int (rand (36000));

72000 =

60sec * 60m n * 20hr

$later = $now + int (rand (72000));

3+

particul
0 -

s wWwN P
'

#
#
#
#
#
#
#
#
#
@n = gnti

Pad- out
if ($rn[3]
{

ar, these are of
seconds

m nut es

hour

day of the nonth
nont h nunber (starts @zero)
year nunber (# years from 1900)

i mportance:

ne ($now);

anyt hi ng t hat
< 10)

needs it (grr...)

be able to use this again...

' May’

gntine() converts-out the tine into a whole LI ST of val ues.

Jun’

Sonet i nes,
of the current tine.

'JU|','Aug',

this code

In

Appendicies

Page 55 of 74

Andy Reitz (reitz@ces.cwru.edu)

ECEX433: Final Project Appendicies December 3, 1998

$rn[3] = "0%rn[3]";
}

if ($rn[2] < 10)
{

$rn[2] = "0%rn[2]";
}

if ($rn[1l] < 10)
{

$rn[1] = "0%rn[1]";
}

if ($rn[0] < 10)
{

$rn[0] = "0%rn[0]";
}

$rn[5] += 1900;
$start = "$rn[3]-$nmonths[$rn[4]]-$rn[5] $rn[2]:$rn[1]:$rn[0]";

@l =gntime ($later);
if ($ri[3] < 10)

{
$ri[3] ="0%rl[3]";
}

if ($ri[2] < 10)
{

$ri[2] = "0$rl[2]";
}

if ($ri[1] < 10)

{
$ri[1] = "0$ri[1]";
}

if ($ri[0] < 10)

{
$ri[0] ="0%$rI[O]";
}

$r1[5] += 1900;
$stop = "$rlI[3]-$nonths[$r1[4]]-SrI[5] $rI[2]:$rI[2]:%$rI[O]";

return ($start, $stop);

} # End gen_dates().

#

Cenerates a 10 digit phone number, area-code first. | think that it’s pretty
spiffy that the area codes actually 'nmake sense’.

#

sub gen_phone_nunber {

ny ($hostname) = shift (@);
ny (@rea_codes);

ny ($ret_num;

ny ($counter);

if ($hostnane =~ /CH/)
{

Appendicies Page 56 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECE$A33: Final Project Appendicies

December 3, 1998

@rea_codes = (440, 216, 330);
}

el se

@rea_codes

}

$ret_num="\"";
$ret_num .= $area_codes[int (rand ($#area_codes))];

(630, 708, 312, 847, 713);

for ($counter = 0; S$counter < 7; S$counter++)

{
$ret_num .= int (rand (10));
}

$ret_num.="\"";

return ($ret_num;
} # End gen_phone_nunber ().

#

This subroutine returns a port nane, based upon the NAS-hostname it is given.
It appends a random nunber to each port, the size of which is based upon

ny notion of each NAS s port capacity.
#
sub gen_port {

ny ($hostnane) = shift (@);
ny ($ret_port);

i f ($hostnane =~ /2516/)

These things max out at 32 ports.
$ret _port = "2516_Async_";
$ret_port .= int (rand (32));

}

el se

{

These things max out at 256 ports.
$ret _port = "5200_Async_";

$ret_port .= int (rand (256));

}

return ($ret_port);
} # End gen_port ().

Appendix B: “generate_calls_completed.sql”

/**/

/* ECES 433, Final Design Project */
/* "generate_calls_conpleted.sql’ - Inplenents the PL/SQL functionality */
/* necessary in order to convert statel ess 'Raw_Accounting’ */
/* records into the stateful "Call’ type records. */
/* by Andy Reitz (reitz@es. cw u. edu) */
/* Date: 12/10/98 */

/**/

/* To start off, the output table nust be created. */
CREATE TABLE Cal | s_Conpl et ed (

callid | NTEGER,

userid VARCHAR2(11),

NAS_host name VARCHAR2(11),

Appendicies Page 57 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECEX433: Final Project Appendicies December 3, 1998

NAS_port VARCHAR2(16),
start _ti me DATE,
stop_time DATE,
duration | NTEGER,
tot_bytes_in | NTEGER,
tot _bytes_out | NTECER,
tot _paks_in | NTECER,

t ot _paks_out | NTEGER,
PRI MARY KEY (callid));

DECLARE
/* This cursor points to all of the START-rows. */
CURSCR start_cur 1S
SELECT *
FROM Raw_Accounti ng
WHERE type = ' START ;

/* This cursor points to all of the STOP-rows. */
CURSCR stop_cur IS

SELECT *

FROM Raw_Accounti ng

WHERE type =’ STCOP;

callid I NTEGER : = 0; /* The current call found. */
duration | NTEGER; /* The length of said call. */
tot_bytes_in | NTEGER /* Aggregated bytes input. */
tot _bytes_out | NTECER /* Aggregated bytes output. */
tot _paks_in | NTECER; /* Aggregated packets input. */
t ot _paks_out | NTEGER /* Aggregated packets output. */
BEG N
/*
* This function is inplenented as two nested | oops. The outer
* steps through every START record. For each such record, we | ook
* through all of the STOP records for the one that has the sane
* NAS_hostnane and task_id. Once found, this data is inserted as a
*

new record in the 'Calls_Conpleted table, and the original

* are deleted from’ Raw_Accounting’ .

*/

FOR start_rec IN start_cur LOOP

FOR stop_rec I N stop_cur LOOP
IF (start_rec.task_id = stop_rec.task_id) AND

(start _rec. NAS_host name = stop_rec. NAS_host name) THEN
/* Conpute duration */

duration := stop_rec.log_date - start_rec.|og_date;

/* Conpute totals */

tot_bytes_in := stop_rec.pre_bytes_in +
stop_rec. bytes_in;

tot_bytes out := stop_rec.pre_bytes_out +
stop_rec. bytes_out;

tot_paks_in := stop_rec. pre_paks_in +
stop_rec. paks_in;

tot _paks_out := stop_rec.pre_paks_out +
st op_rec. paks_out;

/* Insert this call. */

I NSERT | NTO Cal | s_Conpl eted VALUES (callid,

start_rec.userid, start_rec. NAS_host nane,
start_rec. NAS port, start_rec.log_date,
stop_rec.log_date, duration, tot_bytes_in,
tot_bytes_out, tot_paks_in, tot_paks_out);

Appendicies Page 58 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECEX433: Final Project Appendicies December 3, 1998

/* Increment callid nunber */
callid :=callid + 1;

/* Delete the stop_rec */
DELETE
FROM Raw_Accounti ng
WHERE task_id = stop_rec.task_id
AND NAS host name = stop_rec. NAS_host nane;

/* Delete the start_rec */
DELETE
FROM Raw_Accounti ng
WHERE task id = start_rec.task_id
AND NAS host nane = start_rec. NAS_host nane;

END | F;
END LOCP;
END LOCP;
END;

Appendix C: “db_init.sql” |

/**/

/* ECES 433, Final Design Project */
/* "db_init.sql’ - Configures the Oracle 7 environment and creates the */
/* the three main rel ations. */
/* by Andy Reitz (reitz@es. cw u. edu) */
/* Date: 12/10/98 */

/**/

/* Setup the environnent. */
set linesize 500

set pagesi ze 1000

set wap off

/* This makes the dates in the 'Accounting’ relation work better. */
ALTER SESSI ON SET NLS_DATE_FORNMAT = ' DD- MON- YYYY HH24: M : SS ;

/* Clean-up any existing tables. */
drop table calls_conpl eted;

drop table raw accounti ng;

drop table authorization;

drop table authentication;

/* Create the 'Authentication table. */
CREATE TABLE Aut hentication (
userid VARCHAR2(11),
name VARCHAR2(40),
| ogi n VARCHAR2(18),
menber VARCHAR2(10),
chap VARCHAR2(18),
pap VARCHAR2(18),
type VARCHAR2(5),
gl obal VARCHAR2(18),
PRI MARY KEY (userid));

/* Create the 'Authorization’ table. */
CREATE TABLE Aut hori zation (

userid VARCHAR2(11),

i nacl | NTECER,

out acl | NTEGER,

Appendicies Page 59 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECEX433: Final Project Appendicies December 3, 1998

ti meout | NTEGER

idletime | NTEGER,

addr VARCHAR2(15),

routi ng VARCHAR2(5),

rout e VARCHAR2(49),

FOREI GN KEY (userid) REFERENCES Aut henti cati on ON DELETE CASCADE);

/* Create the 'Accounting table. */
CREATE TABLE Raw_Accounting (
| og_dat e DATE,
NAS_host name VARCHAR2(11),
userid VARCHAR2(11),
NAS port VARCHAR2(16),
r enot e_phone_nunber CHAR(10),
type VARCHAR2(6),
NasUser Name VARCHAR2(40),
task_i d | NTEGER
ti mezone VARCHAR2(3),
servi ce VARCHAR2(3),
pr ot ocol VARCHAR2(3),
addr VARCHAR2(15),
di sc_cause | NTEGER,
di sc_cause_ext | NTEGER,
pre_bytes_in | NTEGER,
pre_bytes_out | NTEGER
pre_paks_i n | NTECER,
pre_paks_out | NTEGER,
bytes_in | NTEGER,
byt es_out | NTEGER
paks_i n | NTECER,
paks_out | NTEGER,
pre_session_time | NTEGER,
el apsed_ti me | NTEGER,
data_rate | NTEGER);

 Appendix D: “authentication_queries.sql”

/**/

/* ECES 433, Final Design Project */
/* "authentication_queries.sql’ - Performes the given ’'Authentication */
/* Queri es. */
/* by Andy Reitz (reitz@es. cw u. edu) */
/* Date: 12/10/98 */

/**/

/*
* Authentication Query 1 (Find the record for particular userid)
*/

SELECT *

FROM Aut henti cati on

VHERE userid = "jeknfQ’;

/*
* Authentication Query 2 (Find all of the users that have an unitialized
* passwor d)
*/
SELECT A userid, A nane
FROM Aut henti cation A
WHERE login = 'cleartext tenpassl
CR pap = 'cl eartext tenpassl’
OR chap = ’'cleartext tenpassl
CR gl obal = ’'cleartext tempassl’;

Appendicies Page 60 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECEX433: Final Project Appendicies December 3, 1998

/*
* Aut hentication Query 3 (Find any administrators that have an unitialized
* passwor d)
*/

SELECT A userid, A nane

FROM Aut henti cati on A

WHERE (A type "admin’ AND A.login = 'cleartext tenpassl’) OR

(A.type = "adnmin’ AND A pap = 'cleartext tenpassl’) CR
(A.type = "adnmin’ AND A chap = ’'cleartext tenpassl’) OR
(A.type = "adnmin’ AND A gl obal = ’'cleartext tenpassl');

/*

* Aut hentication Query 4 (Deternmine the nunber of actual users, as well as the
nunber of

* active users)

*/

SELECT GOUNT (*) AS num_users

FRQM Aut henti cati on;

SELECT QGOUNT (A2.userid) AS active_users
FROM Aut henti cati on A2
WHERE A2.login <> 'cleartext tenpassl

CR A2.pap <> 'cleartext tenpassl’

OR A2.chap <> ’'cleartext tenpassl’

CR A2.gl obal <> 'cleartext tenpassl’;

Appendix E: “authentication_queries.out”

DOC> * Authentication Query 1 (Find the record for particular userid)
DOC> */

*** NOTE: The original output to this query was lost. | believe this to be
an accurate reconstruction. ***

USERI D NAME LOG N MEMBER
CHAP PAP TYPE GLOBAL
j eknfO Tiddl eflip, G eedo cleartext f&AKbl hk

tenpl ate cleartext fAKblhk cleartext fGAKblhk NULL cleartext f&AKbl hk

DOC> * Authentication Query 2 (Find all of the users that have an unitialized

passwor d)

DOC */

USERI D NAMVE

wpznp3 Zebo, Rot o- Rooter N
Xswbk5 Funt z, Toadstool D
hsl xe7 Vuei gez, Mussol i ni
j bonl 8 Lumpwunp, Sant os
jerxnil Lewis, Bartley
plitnl2 Qureshi, Professor
oecpol5 Herder, Fips

nxj ct 16 Preen, Long
fovybl8 Lester, Chief

gf pcc21 Bat or, Fyvush
gdmdn27 Merat, Duke

enyl p30 Bl at ch, Domi nic H
rl ukh31 McGoot er, Ahura
zxbbd32 Keenan, Chief

nj nuj 39 Roxwox, Bi nky

Appendicies Page 61 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECE$A33: Final Project Appendicies

December 3, 1998

cl ntv4l Toot hpaste, Cowy
0zbdy46 Horn, Sascha X

dwknj 48 Toot hpast e, Duke

cbfi 055 Keenan, Stephan

dedt u58 Funt z, Crunch

I'j ndj 62 Pip, Frink

SVj yx65 Brown, Marc E

r nbs68 Zabubadoof ski, Professor
f sxcwr2 O o, Debbie O

vpj cj 80 Fi nn, Jean-Louis |

hgj mv81 Rassoodock, Irene U

ur pkb88 R ngworm Chewi e

gwbt v92 Merat, Eblis

dqmui 94 Hekkel man, Jean-Louis U
crozz96 H umpf, Fl audvie K
quhrt 99 Coesh, Boutr os-Boutros

i zbvwl01l Twi nki e, Cousin S
juzrv1l04 M CGooter, Buzz G

df zj s106 Papachri st ou, Chunk
omsbplll M ngus, Polly I

i t nok115 Shaughnessy, Chups D
jjszhl16 Bol ogna, Elmo B

wj oj c117 Vallop, Hap V

ojrtl 120 Johnson, Rot o- Root er
xohf z124 Toot hpaste, Shirley
ffdwgl25 Brown, Lunps D

pugi i 132 St yr of oam Ral ph
0szbol36 Di | nont, Rodney
I1ifj138 Esch, Luan

dt ens139 Gapeev, Nerf W

| vyphl141 Mazda, Glligan N
ernunl47 Trier, Butch
byccql48 Shucker, Liz
mkwuv150 Harl ey, Chunk
nsqyk152 R ngworm Pol |y
ucupj 154 Pul dup, Maxim lian

i zuyul63 Pul dup, Gerp U

cbhpr 164 MG ooter, Onnie U
kovyb166 W ndex, d etus

cj ggr 167 Tabukal loli, Glligan O
unmxbd169 Hernfi k, Rot o- Root er
torbcl70 Harasmat ari, Shanpoo X
j pgel 173 Tabukal | ol i, Pam
gmi k182 Br own, Bobo
kycox188 Dent, Liz

yqubs189 Brown, Jean-Louis
rnfril95 Buddha, Futon

f mbgni96 Tunkl ebit, Miussolini M
cqcbp203 Roxwox, Eblis G
buuyv209 Reed, CGorbin

m ooc214 Torval ds, Sancho

t dbgs216 Dannowski, Shanpoo
ecvjt217 val | op, E no

f pvj p220 Klink, Onnie D
hxhcs222 N hlen, U ek
vfrwh226 Tanenbaum Fyvush
uyvuo229 Pip, Francis

rem d234 Wer, Hap G

got ee254 Prune, Fivel

nkl hi 255 Bl at ch, O ange

cdj qv256 Yummy, Polly
xddbx259 Beani e, Jean-Louis
zkckk263 Cuervo, G lligan

Appendicies Page 62 of 74

Andy Reitz (reitz@ces.cwru.edu)

ECE$A33: Final Project Appendicies

December 3, 1998

oecks264 Gouda, Bobo

qugcf 265 Crunthuck, 111l apotin
xkt qy270 Qzsoyogl u, Boutros-Boutros R
gebuj 272 Torvalds, G Iligan
gzgzl 275 Lopdop, Liz

sbgt k278 Pi p, Professor G
rjtph283 Shucker, Luan D
xhnok288 Smree, Morton

dhoi n289 Torval ds, E P

j 1 mfn292 St yr of oam Toadst ool
unfij 294 Bol ogna, Fri sky
vdebt 298 St runker, Nogo

hej gs300 Vader, Brent

yurlj 304 Li pster, Tex D

t peuk308 Leech, Linus

vysr o309 Funbucket, Darth
wpyqw310 Quiggle, Marc
tvrgt312 D pdip, A

bzwf g314 Qureshi, Frink L
zgoqr 316 Pul sifer, Gorbin
xvyt x321 Pal mer, Porky
ugezy328 Dent, Uwe R

wsdf | 332 Cuervo, Polly R
kmepv333 Shucker, Futon

sdhj u336 Hon, Kent Havnoovy
ndrup340 Budupadupa, Fyvush E
dsj wo341 Crunthuck, Thel oni ous
gr kuv342 Shaughnessy, Sara R
puzj v344 Preen, Nataraj an

bt kvc347 Dent, M nga

oxrks348 St yr of oam Meep

zf m v350 Andr eesen, Nogo E
huuxi 352 Hrunpf, Seynor J
uxgen354 Conpers, Mgwhunmp F
t ynng356 Strunker, Nerf

wkcf w357 Pal mer, Marc
ilcqj358 Humpf, Hewl ett B

i pugv363 Ccasi o, Al exei

ww de366 Reitz, Fivel

gi ucnB68 Dave, Cousin

j rnhk369 Pal mer, Maximlian
nzuknB871 Trier, Yitner T

hpxj b377 Lopdop, G lligan

zt xzb382 Woer, Luan D
kvkzb383 Yaxmutt, Andy

yoqol 384 Chiller, Gorbin Q

nj qgl 387 Couda, Brent

sf pyn889 Fi nkel , d unky
bgqgc392 Young, Fritz F
jjred393 Vuei gez, Krusty

| xogw398 MG ooter, Tex

wgr hf 402 Harl ey, Bartley

ngi f z404 Sned, M tzencrom
xdcmu410 Bol ogna, Arafat

owbr b417 Fi nkel , Futon
dcshv418 Tabukal | ol i, Goonba S
| xzny426 Ferndi p, Natarajan T
r gxgd427 Storrs, Scooter P
pxhoj 430 N hl en, Roto- Root er
ur hgj 431 Hekkel man, Shirl ey

i Xvqy432 Smee, Luke U

yzvgf 433 Tanenbaum Maxinilian
dj cw 443 Zi pper, Professor R

Appendicies Page 63 of 74

Andy Reitz (reitz@ces.cwru.edu)

ECEX433: Final Project Appendicies December 3, 1998

gf nsp445 Hoot enanny, Sant os
Xsi ux448 Reed, Pops

nr xoh453 Pul sifer, Lamar
tnjiq460 Hanbone, Luan X

oi hhr 463 Leech, Sara S
weqdd473 Cheesenose, Linus
rugrb474 Ghali, Chief
whzed481 Lewi s, Buck

ej kgh486 Yada, CGorbin U
dkbss488 Qzsoyogl u, Fyvush O
jwjfa91 Beani e, Lamar
ursyr492 Packard, Eblis J
gsbsk499 Shaughnessy, Migwhunp H

154 rows sel ect ed.

DOC> * Authentication Query 3 (Find any adm nistrators that have an unitialized

passwor d)

DOC> */

USERI D NAME

oecpols Herder, Fips

vpj cj 80 Fi nn, Jean-Louis |

juzrv1l04 M CGooter, Buzz G
ffdwgl25 Brown, Lunps D
byccql48 Shucker, Liz
yqubs189 Br own, Jean-Loui s
dhoi n289 Torval ds, El P

xvyt x321 Pal mer, Porky
ndrup340 Budupadupa, Fyvush E
gr kuv342 Shaughnessy, Sara R
huuxi 352 Hrunpf, Seynor J

gf nsp445 Hoot enanny, Sant os

12 rows sel ected.

DOC> * Authentication Query 4 (Determ ne the nunmber of actual users, as well as
t he nunber of

DOC> * active users)

DOC> */

NUM_USERS

Appendix F: “authorization_queries.sql” |

/**/

/* ECES 433, Final Design Project */
/* "aut horization_queries.sql’ - Performes the given ’'Authorization’ */
/* Queri es. */
/* by Andy Reitz (reitz@es. cw u. edu) */
/* Date: 12/10/98 */

/**/

/*
* Aut hori zation Query 5 (Find the record for a given userid)

Appendicies Page 64 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECEX433: Final Project Appendicies December 3, 1998

*/
SELECT *
FROM Aut hori zation
WHERE userid = 'jeknfO’;

/*
* Aut hori zation Query 6 (Find the users how have strict security settings)
*/
SELECT userid
FROM Aut hori zati on
WHERE inacl I'S NOT NULL AND outacl 1S NOT NULL
AND routing = ' FALSE ;

/*
* Aut horization Query 7 (Find the users that have strict tineouts)
*/

SELECT userid

FROM Aut hori zati on

WHERE tineout <= 3600;

/*
* Aut horization Query 8 (Find the administrators that have pernissive
* security settings)
*/
SELECT Z.userid, A nane
FROM Aut hori zation Z, Authentication A
WHERE A userid = Z. userid
AND A type = "adm n’
AND (Z.inacl IS NULL
OR Z. outacl 1S NULL
OR Z. routing = 'TRUE);

/*
* Aut horization Query 9 (Find the "worst’ administrators [those from
* Queries 8 and 4])
*/
SELECT Z.userid, A nane
FROM Aut hori zation Z, Authentication A
WHERE A userid = Z. userid
AND A type = "adm n’
AND (Z.inacl IS NULL
OR Z. outacl 1S NULL
OR Z. routing = " TRUE)
| NTERSECT
SELECT A userid, A nane
FROM Aut henti cation A
WHERE (A type = "admin’ AND A login = 'cleartext tenmpassl’) CR

(A.type = "adnmin’ AND A pap = 'cleartext tenpassl') CR
(A.type = "adnmin’ AND A chap = ’'cleartext tenpassl’) OR
(A.type = "adnmin’ AND A gl obal = ’'cleartext tenpassl');

 Appendix G: “authorization_queries.out”

DOC> * Aut horization Query 5 (Find the record for a given userid)
DOC> */

*** NOTE: The original output to this query was lost. | believe this to be
an accurate reconstruction. ***

USERI D I NACL OUTACL TI MEQUT | DLETI ME ADDR ROQUTI NG RQUTE

Appendicies Page 65 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECEX433: Final Project Appendicies December 3, 1998

j eknf O 11 242 NULL NULL NULL TRUE
10.120. 152. 0 255. 255. 255. 0 10.120. 152. 251

DOC> * Aut hori zation Query 6 (Find the users how have strict security settings)
DOC */

USERI D

i guzr 10
plitnl2
oecpols
nxj ct 16
fovybl8
ui fuk19
gf pcc21
hpshb22
zj zvh23
gdndn27
enyl p30
oghor 36
zei znB7
perzy38
nqux| 40
cj ekx54
zxl zc56
ej nxs57
dedt u58
gcdi d61
scohp66
wvred69
f sxcwr2
vpj cj 80
hhcsc84
eobyf 85
i zbvw101
juzrvl1l04
ovwbol105
zi gvql09
smgrrli4
yrdet 119
ojrtl 120
ol syel23
npi cx131
pgvkv134
i ngps135
0szbol36
dt ens139
nT gxb142
pnrfql46
nsqyk152
ucupj 154
wkzkl 162
i zuyul63
cbhpr 164
unmxbd169
zhmocl71
wunyj 177
j uewo181
ornet198

Appendicies Page 66 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECEX433: Final Project Appendicies December 3, 1998

yql kd199
whj t v202
sqvxk208
buuyv209
| gwnn211
m ooc214
xfjej219
f pvj p220
nsngx228
uyvuo229
oi hqv232
i zsvs238
ei csv245
vkgku246
gej hz260
| f edu262
rjtph283
gesng290
wepgf 291
vi i nv293
zcvds302
yol pg305
i gzoq307
vysr 0309
zgoqr 316
| cdug330
wsdf | 332
kmepv333
nhuet 339
gr kuv342
pgoqn345
urgzg353
ilcqj358
gl ygh359
zdxvg360
i pugv363
ngi i c364
oobi v367
i kj ywsd70
zexxp372
rj puvd74
ufljg378
nj qgl 387
sf pynB89
hkvt p394
uscss396
| gj qi 403
mant k405
xqpx| 406
xdcnu410
bpt by416
cxnsn421
pryeg423
rgxgd427
i Xvqy432
yl j xh438
dkvhr 440
dxpj v444
coyew446
unwj b447
gj | hu4s50
dhnmcy456
yi gi u461

Appendicies Page 67 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECEX433: Final Project Appendicies December 3, 1998

f nyzg462
nvl vs464
oknj j 472
pefvg475
yhw ud77
ewsvni79
| ytvz480
cf duh484
ef ghq487
j csty493
obwj c496
eywsw497
gsbsk499

131 rows sel ected

DOC> * Aut horization Query 7 (Find the users that have strict timeouts)
DOC> */

USERI D

plitnl2

DOC> * Aut hori zation Query 8 (Find the administrators that have perm ssive
security settings)

DOC> */

USERI D NAMVE

nwxhb13 Ccasi o, Lunps

oewf c43 Monk, Ringo X
izift44 G oening, Bartley L
mwmnxr 53 Li pster, Flaudvie K
j ohko64 Crups, Zonker K

gxi m02 Prune, The

r ccwrlQ7 Tanenbaum Long G
scqgnk113 Pytte, Amanda
bjixil2l Yada, Nadge V

ff dwgl25 Brown, Lunps D

dj enj 143 Zabubadoof ski, Boutros-Boutros
byccql48 Shucker, Liz

vt |l st 158 Hon, El no

enj br 186 Yokel , Hap
yqubs189 Br own, Jean-Loui s
pzur d201 Puckett, Erasnus
rqqf 0210 Fargo, Shirley U
chfsv221 Preen, Linus T
ysvby239 Daras, Andrew

xr phn253 Headroom |Irene Z
zynr u287 MGiff, Paul

dhoi n289 Torval ds, E P
pyynk320 R ngworm Ilvan F
xvyt x321 Pal mer, Porky

f pbm 325 Dent, Seynor
pyesn331 Br own, Fedbo

i wxt p334 MG ooter, Meep |
ndrup340 Budupadupa, Fyvush E
huuxi 352 Hrunpf, Seynor J
vzpnr 375 Finn, detus G

xnl cw390 Crups, Mnga

mxny miQ07 Pul dup, Cousin S
zl ecz429 Torval ds, Debbie V
t vhor 434 Wang, Lanfried K

Appendicies Page 68 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECEX433: Final Project Appendicies December 3, 1998

kscng442 Tunkl ebi t, Chups

gf nsp445 Hoot enanny, Sant os
zdj no452 M Cee, Al exei

vj or s458 Lopdop, Mussolini R
xf zxc494 Vader, Goof bal |

39 rows sel ect ed.

DOC> * Aut horization Query 9 (Find the "worst’ adnministrators [those from
Queries 8 and 4])
DOC */

USERI D NAMVE

byccql48 Shucker, Liz

dhoi n289 Torval ds, E P

ff dwgl25 Brown, Lunps D

gf nsp445 Hoot enanny, Sant os
huuxi 352 Hrunpf, Seynor J
ndrup340 Budupadupa, Fyvush E
xvyt x321 Pal mer, Porky
yqubs189 Br own, Jean-Loui s

8 rows sel ected.

Appendix H: “accounting_queries.sql” |

/**/

/* ECES 433, Final Design Project */
/* "accounting_queries.sql’ - Perfornmes the given 'Accounting’ Queries. */
/* by Andy Reitz (reitz@es. cw u. edu) */
/* Date: 12/10/98 */

/**/

/*
* Accounting Query 10 (Find the users that are currently logged into a
* given NAS)
*/
SELECT A userid, A nane, Cstart_time, C stop_tine
FROM Aut hentication A, Calls_Conpleted C
WHERE A userid = C. userid
AND C. stop_tinme > '08-Dec-1998 07: 00: 00’
AND C. NAS_hostnane = ’'1L_as2516’
UNI ON
SELECT R userid, R NasUserNane, R |og_date, TO DATE(NULL)
FROM Raw_Accounting R
WHERE R type = ' START
AND | og_date < ' 08-Dec-1998 07:00: 00’
AND R NAS_hostnane = 'IL_as2516’;

/*
* Accounting Query 11 (Find the last logins for a given tinme period, in
* reverse order)

SELECT C.userid, A nane, C NAS hostnanme, C. NAS port, C start_tine
FROM Cal I s_Conpl eted C, Authentication A
WHERE C.start_time >= ' 07-Dec-1998 12:00: 00’
AND C.start_tine < ’08-Dec-1998 23:59: 59
AND C.userid = A userid
ORDER BY C.start_tine DESC,

/*
* Accounting Query 12 (Find 'nmalformed logfile entries)

Appendicies Page 69 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECEX433: Final Project Appendicies December 3, 1998

*/
SELECT userid, NasUser Nane, NAS host nane, NAS port, type
FROM Raw_Account i ng

WHERE type =’ STOP;

/*
* Accounting Query 13 (Find the usage history for each user, for a given
* time period.)
*/
SELECT A name, C.userid, Cduration, C start_time, C. NAS hostnane, C NAS port
FROM Cal I s_Conpl eted C, Authentication A
WHERE C.userid = A userid
AND C.start_tinme >= ' 07-Dec-1998 12: 00: 00’
AND C.start_time < ’08-Dec-1998 23:59: 59’
GROUP BY C.userid, A nane, C duration, C.start_tinme, C.NAS_hostnane,
C. NAS_port;

Appendix I: “accounting_queries.out” |
DOC> * Accounting Query 10 (Find the users that are currently logged into a

gi ven NAS)

DOC> */

USERI D NAME START_TI ME

STCOP_TI ME

bt | ee243 Di | nont, Tex 08- DEC- 1998 03: 43: 53 08-
DEC- 1998 23:17:55

bwdun17 Hernfik, Darth 07- DEG- 1998 21: 38:01

cl ntv4l Toot hpaste, Cowy 07- DEG 1998 20: 16: 33
flbsg33 Gonpers, Shanpoo N 08- DEC- 1998 01: 59: 00
fovybl8 Lester, Chief 07- DEC- 1998 20: 14: 28
gdmdn27 Merat, Duke 07- DEC- 1998 18: 00: 58

i fbsq74 Bator, Natarajan F 08- DEC- 1998 02: 36: 36 08-
DEC- 1998 22: 00: 53

j bonl 8 Lumpwunp, Sant os 07- DEG 1998 19: 07: 16
jerxnil Lewis, Bartley 07- DEG- 1998 23:37:19

j eknf O Tiddl eflip, G eedo 08- DEC- 1998 02:13:58

[dvifé D pdi p, Luke R 07- DEC 1998 23: 39: 44
nqux| 40 Val | op, Orange M 07- DEG- 1998 18: 28:53

nui xz399 Dent, Ringo 08- DEG- 1998 03:47:12 08-
DEGC- 1998 23: 07: 27

perzy38 Gassee, Toadst ool 08- DEC- 1998 03: 21: 07
plitnl2 Qureshi, Professor 08- DEG- 1998 03: 31: 37 08-
DEGC- 1998 23: 24: 15

rl ukh31 McGoot er, Ahura 08- DEG- 1998 03: 01: 42
rucwe25 Crunthuck, Meep 07- DEC- 1998 20: 22: 08

vpj cj 80 Fi nn, Jean-Louis | 08- DEG- 1998 03: 09: 28 08-
DEC- 1998 22: 00: 34

vzvtt49 Yokel, M nga J 07- DEG- 1998 20: 59: 39
wpznp3 Zebo, Roto-Rooter N 07- DEGC- 1998 18: 24: 29
wupdv165 Yurmy, Liz 08- DEC- 1998 02: 54: 26 08-
DEGC- 1998 22:01: 17

yypt m59 Bavari an, Coof ball 08- DEC- 1998 02:57: 19 08-
DEC- 1998 22: 08: 36

zei znB7 H umpf, Pam C 07- DEG 1998 20: 35: 41

zj zvh23 Kagy, Fedbo 08- DEC- 1998 00: 01: 42

24 rows sel ected.

DOC> * Accounting Query 11 (Find the |last logins for a given tine period, in
reverse order)

Appendicies Page 70 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECE$A33: Final Project Appendicies

December 3, 1998

DOC> */

USERI D NAMVE NAS_HOSTNAM NAS_PORT
START_TI ME

ndrup340 Budupadupa, Fyvush E I L_as2516 2516_Async_24
08- DEC- 1998 01: 59: 56

owt ht 315 Leech, Santos OH_as5200 5200_Async_15
08- DEC-1998 01:59:51

bj xcw319 Young, Bartl ey OH_as5200 5200_Async_132
08- DEC- 1998 01:59: 15

zyeod9 Batur, Ben O OH_as5200 5200_Async_43
08- DEC- 1998 01:57: 09

f pbm 325 Dent, Seynor OH_as5200 5200_Async_132
08- DEC- 1998 01: 56: 53

enj br 186 Yokel , Hap OH_as5200 5200_Async_177
08- DEC- 1998 01: 56: 47

nwxhb13 Ccasi o, Lunps I L_as2516 2516_Async_28
08- DEC- 1998 01: 56: 38

pxquv26 Lewis, Chaz L OH_as5200 5200_Async_121
08- DEC- 1998 01: 56: 33

oghor 36 Broom Roto-Rooter N OH_as5200 5200_Async_216
08- DEC- 1998 01: 56: 28

nsngx228 Rabi niwitzin, Irene I L_as2516 2516_Async_12
08- DEC- 1998 01: 56: 10

hpshb22 Bol ogna, Ernie T OH_as5200 5200_Async_64
08- DEC- 1998 01: 55: 56

i xvqy432 Smee, Luke U I L_as2516 2516_Async_7
08- DEC- 1998 01: 54: 49

hf ngn250 Ernst, Bartley I L_as2516 2516_Async_14
08- DEC- 1998 01: 54: 46

t ynng356 Strunker, Nerf OH_as5200 5200_Async_76
08- DEC- 1998 01: 54: 32

cyyjv126 Codse, Rot o- Root er I L_as2516 2516_Async_19
08- DEC- 1998 01: 54: 29

sbgt k278 Pi p, Professor G I L_as2516 2516_Async_20
08- DEC- 1998 01: 54: 29

gxi n02 Prune, The I L_as2516 2516_Async_0
08- DEC- 1998 01: 54: 28

cl xnh365 Tunkl ebi t, Homer OH_as5200 5200_Async_45
08- DEC- 1998 01: 54: 00

clntv4l Toot hpaste, Crowy OH_as5200 5200_Async_44
08- DEC- 1998 01:53: 58

pyynk320 R ngworm Ilvan F I L_as2516 2516_Async_26
08- DEC- 1998 01: 53: 46

pxhoj 430 N hl en, Roto- Root er OH_as5200 5200_Async_174
08- DEC- 1998 01:53: 15

wkpyul79 Oo, IllapotinJ I L_as2516 2516_Async_23
08- DEC- 1998 01:52: 58

gdmdn27 Merat, Duke IL_as2516 2516_Async_9
08- DEC- 1998 01: 52: 57

coyew446 Horn, Lanfried I L_as2516 2516_Async_0O
08- DEC- 1998 01: 52: 45

fjylcli8 Torval ds, Bi nky OH_as5200 5200_Async_200
08- DEC- 1998 01: 52: 36

pshwz86 Duggan, Uan Z OH_as5200 5200_Async_59
08- DEC- 1998 01: 51: 57

i zuyul63 Pul dup, Gerp U IL_as2516 2516_Async_4
08- DEC- 1998 01:51: 54

torbcl70 Harasmat ari, Shanpoo X OH_as5200 5200_Async_90
08- DEC- 1998 01: 51: 38

Appendicies Page 71 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECEX433: Final Project Appendicies December 3, 1998

The rest of this output has been renoved fromthe printed version, due to
| ength. The full text can be found on the el ectronic subnission nedia.

254 rows sel ect ed.

DOC> * Accounting Query 12 (Find "nmalformed logfile entries)
DOC> */

USERI D NASUSERNANME NAS_HOSTNAM NAS_PORT

TYPE

gxl zql Couda, Gl bert N OH_as5200 5200_Async_108
STCP

crjgg2 Nutter, Pops OH_as5200 5200_Async_0O
STCP

fhhry4 Hool oo, Liz OH_as5200 5200_Async_176
STCP

Xswbk5 Funt z, Toadstool D OH as5200 5200_Async_225
STCP

hsl xe7 Vuei gez, Mussol i ni I L_as2516 2516_Async_21
STCP

zyeod9 Batur, Ben O I L_as2516 2516_Async_14
STCP

i guzr 10 Pup, Freep W I L_as2516 2516_Async_11
STCOP

plitnl2 Qureshi, Professor I L_as2516 2516_Async_31
STCOP

nwxhb13 Ccasi o, Lunps I L_as2516 2516_Async_21
STCOP

gsdycl4 Funmbucket, Buck IL_as2516 2516_Async_25
STCOP

ui fuk19 Vader, C unky I L_as2516 2516_Async_9
STCOP

nevgt 20 Chiller, Fivel I L_as2516 2516_Async_24
STCOP

gf pcc21 Bat or, Fyvush I L_as2516 2516_Async_27
STCOP

pxquv26 Lewis, Chaz L I L_as2516 2516_Async_29
STCOP

tqgj nv28 Horn, Frink G OH_as5200 5200_Async_56
STCOP

enyl p30 Bl at ch, Dominic H OH_as5200 5200_Async_38
STCOP

sgrxo35 Coesh, Tryfon | OH_as5200 5200_Async_102
STCOP

oghor 36 Broom Roto-Rooter N I L_as2516 2516_Async_29
STCOP

kkygo42 Neff, Orunch IL_as2516 2516_Async_3
STCOP

dwknj 48 Toot hpast e, Duke OH_as5200 5200_Async_135
STCOP

20 rows sel ect ed.

DOC> * Accounting Query 13 (Find the usage history for each user, for a given
time period.)

Appendicies Page 72 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECEX433: Final Project Appendicies December 3, 1998

DOC> */

NAVE USERI D DURATI ON START_TI ME
NAS HOSTNAM NAS PORT

Wang, Ceezy bbwwg266 0 07-DEC 1998
22:07:52 OH_as5200 5200_Async_98

Cuervo, Nogo J bci eud49 0 07- DEC 1998
23:02: 36 OH as5200 5200_Async_37

Cuervo, Nogo J bci eud49 0 07- DEC 1998
23:55:42 OH as5200 5200_Async_244

Cuervo, Nogo J bci eud49 0 08- DEC 1998
00: 55: 54 OH_as5200 5200_Async_116

Cuervo, Nogo J bci eud49 0 08- DEC 1998
03:08: 29 OH as5200 5200_Async_156

Cuervo, Nogo J bci eud49 1 08- DEC 1998
02:14: 33 OH as5200 5200_Async_179

Neff, Long bdqi r 75 0 07- DEC 1998
19:51: 10 OH_as5200 5200_Async_160

Neff, Long bdqi r 75 0 07- DEC 1998
21:31: 00 OH_as5200 5200_Async_159

Neff, Long bdqi r 75 0 07- DEC 1998
22:12:19 OH as5200 5200_Async_33

Neff, Long bdqi r 75 1 07- DEG 1998
17:57: 29 OH_as5200 5200_Async_50

Neff, Long bdqi r 75 1 07- DEG 1998
21:16: 35 OH as5200 5200_Async_239

Young, Fritz F bggqgc392 0 08- DEC- 1998
01:13:38 | L_as2516 2516_Async_13

Young, Fritz F bggqgc392 0 08- DEC- 1998
02:29: 08 | L_as2516 2516_Async_26

Young, Fritz F bggqgc392 1 08- DEC 1998
01:12:32 IL_as2516 2516_Async_14

Young, Fritz F bggqgc392 1 08- DEC 1998
01:22:39 IL_as2516 2516_Async_4

Young, Fritz F bggqgc392 1 08- DEC 1998
03:03:44 1L_as2516 2516_Async_27

Yada, Nadge V bjixi1l21 1 07- DEG 1998
23:01: 36 | L_as2516 2516_Async_6

Young, Bartley bj xcw319 0 07- DEC 1998
18:21: 28 OH_as5200 5200_Async_23

Young, Bartley bj xcw319 0 07- DEC- 1998
20: 01: 31 OH_as5200 5200_Async_29

Young, Bartley bj xcw319 0 07- DEC- 1998
23:56: 25 OH_as5200 5200_Async_3

Young, Bartley bj xcw319 0 08- DEC- 1998
00: 10: 35 OH_as5200 5200_Async_155

Young, Bartley bj xcw319 1 07- DEGC 1998
21:20: 43 OH_as5200 5200_Async_22

Young, Bartley bj xcw319 1 08- DEC 1998
01:27: 06 OH as5200 5200_Async_190

Young, Bartley bj xcw319 1 08- DEGC 1998
01:32: 08 OH as5200 5200_Async_80

Young, Bartley bj xcw319 1 08- DEGC 1998
01:59:15 OH as5200 5200_Async_132

Headr oom R pper bpt by416 0 07- DEC- 1998
19: 21: 54 OH_as5200 5200_Async_39

Headr oom R pper bpt by416 0 07- DEC 1998
19:51: 11 OH as5200 5200_Async_154

Headr oom R pper bpt by416 0 07- DEC 1998

23:32: 02 OH as5200 5200_Async_249

Appendicies Page 73 of 74 Andy Reitz (reitz@ces.cwru.edu)

ECEX433: Final Project Appendicies December 3, 1998

Headroom Ri pper bpt by416 0 07- DEC 1998
23:45:11 OH as5200 5200_Async_243

The rest of this output has been renoved fromthe printed version, due to
| ength. The full text can be found on the el ectronic subnission nedia.

2170 rows sel ect ed.

! A PRI isan acronym that stands for “Primary Rate Interface’. A PRI is basically a bundle of 23 telephone
lines that share a common phone number. When a user dials the phone number, the telephone system will
select afree one, and pipeit into the NAS. It isfurther possible to segregate the PRI, giving it multiple
phone numbers. In this case, the NAS will log what number was actually called.

4 CHAP stands for the Challenge-Handshake Authentication Protocol, and implements a three-way
handshake between the client and the NAS, in order to ensure a secure authentication exchange.

3 VPDN isan acronym, short for “ Virtual Private Data Network” . Thistechnology allows the private LAN
to be extended securly and seamlessly across the WAN, to the remote client.

* Oracleis currently running arather impressive challenge that implies that their database isthe top
performer in today’ s market. Reference: http://www.oracle.com/challenge/.

Appendicies Page 74 of 74 Andy Reitz (reitz@ces.cwru.edu)

