
���������
	��� ������������	��������������! �"#�$ 	&%'"��!�
%�(

) �!���+* �,��	.-/-10325476�8�8:9

ECES433: Final Project December 3, 1998

Bringing an RDBMS to TACACS+ Page 2 of 74 Andy Reitz (reitz@ces.cwru.edu)

;&<>=@?BADC!EGF�=@HIAJ<
In the realm of data networking, it currently very useful to provide remote access

to a network, for those that must be away from it. This means that it should be possible to

access a private network (such as a campus Intranet) via some sort of public network

(either the telephone system, or as is the case more recently, the Internet). Because this is

such a useful service, many network companies have created many different access

mechanisms over the years. Starting with the primitive terminal server, and moving on to

the current PPP access server, each held the common remote-access goal in mind. The

Internet Engineering Task Force (IETF), with the aid of companies like Cisco Systems,

attempted to bring some level of commonality to all of these devices by several means.

The devices by which remote users actually connected to the local network were termed

the Network Access Server (NAS). Typically, a NAS must have some means by which it

can Authenticate, Authorize, and Account for its remote users. Before standardization,

these roles were handled in unique and proprietary manners. The standardization process

specified the exact roles of the NAS and the back-end NAS server, in order to simplify

their respective implementations, as well as provide a foundation for interoperability.

Thus, a set of protocols were specified, in order to govern the communication between

the NAS and the back-end NAS server, which is in essence the central governing body

for all of the NAS’s in the network. By creating a common protocol, NAS’s from many

vendors would be able to interoperate with a single NAS server, thus simplifying the

Network Administrator’ s role greatly.

For the purposes of this assignment, I am going to focus on the so-called Terminal

Access Controller Access Control System Plus (TACACS+) NAS server, as designed by

Cisco Systems. TACACS+ was designed with complete separation and extensibility of

ECES433: Final Project December 3, 1998

Bringing an RDBMS to TACACS+ Page 3 of 74 Andy Reitz (reitz@ces.cwru.edu)

the three basic elements (authentication, authorization, and accounting) in mind. The

process of verifying the identity of a user (or entity) is accomplished through

authentication in TACACS+. Many different username/password authentication methods

are supported, via the extensible nature of TACACS+. An authorization request in

TACACS+ attempts to refine the level of access that a remote user has with the local

network. This can be anything from restricting configuration parameters (service type, IP

address, how routing information is passed) to actually establishing a per-session Access

Control List (ACL), limiting which areas of the network to which the user can gain

access. Finally, accounting is the process by which all of these remote user sessions are

logged. The accounting mechanism is generalized enough that it can record what a user

has or is currently doing on the network, and thus can be used for billing services as well

as to perform security auditing.

As implemented, the TACACS+ server stores all of its information in a series of

plain ASCII text files. This is fine for most useses of this service, but as Ameritech’s use

of TACACS+ grows, so do their requirements for it. The requirements range from

increased reliability and scalability issues, to those of more flexible reporting/querying of

the data. Thus, it is important to describe the benefits (both actual and desired) which

Ameritech seeks to gain by implementing TACACS+ with an RDBMS back-end. Firstly,

it is hoped that an RDBMS will provide a unified engine for all of the data necessary in

order to support a customer. Furthermore, the RDBMS should easily allow concurrent

access to the data, from multiple TACACS+ servers. An RDBMS should also allow strict

partitioning of data – so that all of the records for each customer could be kept separate

(and secure) in a logical manner. Finally, ease of querying (both via SQL and

ECES433: Final Project December 3, 1998

Bringing an RDBMS to TACACS+ Page 4 of 74 Andy Reitz (reitz@ces.cwru.edu)

transactions) is a definite plus – some of the more advanced data manipulations are

becoming too difficult to do with just flat text files.

K&L1MONPMIQ�RTS�U�V&WYX5M#Z$N@MI[\L.[D]�^+QGN_Qa`b[DS�U�R
In essence, as previously discussed, there are three basic relations in this model:

Authentication, Authorization, and Accounting. Furthermore, each relation (at least

initially) will form the basis of a corresponding table in the dtabase. Each relation will

have it’ s own unique features, and it’s quite possible that one or more of them might act

independent of the others. The following is a description of the data model, taken one

relation at a time.

c�d�egf�hTi�egjlknm�egjlo>iYp
All of the information necessary in order to authenticate a user and establish their

initial network connection is contained in a “ configuration file” -style format. The exact

nature of the syntax used in this file is actually rather ad-hoc, and probably not in BNF.

In essence, the authentication consists of a series of attribute-value pairs for each user

record, that define the paramaters for his/her acceptance into the NAS. Thus, migrating

this relation to an RDBMS contains it’ s own special set of challenges. Since there can be

a variable amount of data, and I cannot use an Object-Relational approach (which, at least

in theory, would make it easy to manage a variable amount of data per row), I plan to

make liberal use of NULL values. Basically, there are two methods to attack this

problem. The first is to attempt to implement a subset of all possible parameters that

TACACS+ allows in the authentication configuration file, in order to support the most

common requirements of most sites. A subset must be supported in order to keep things

from getting exponentially complex. The second method of modeling this data involves

including only the attributes that are actually used by Ameritech. As it turns out,

ECES433: Final Project December 3, 1998

Bringing an RDBMS to TACACS+ Page 5 of 74 Andy Reitz (reitz@ces.cwru.edu)

Ameritech uses a very limited subset of all of the authentication options available, in a

very uniform mannter. Thus, the second method will actually be implemented during the

course of this assignment. The entities in this method include those for a userid and

fullname, as well as password and group-affiliation.

q�r�sgt�u>vBwlxny�sgwlu>zY{
The authorization information is used to constrain the range of connectivity for a

session, based upon the userid. In the current TACACS+ server, this information is

actually presented in the same file (and format) as the authentication information.

However, I plan to break from this current methodology, and analyze this relation

separately from the Authentication relation. Like the authentication information, the

authorization information consists of a list of attribute-values (AV) pairs. Each AV pair

specifies an option (attribute) and its desired effect (value). However, the authorization

relation differs in one key area: not all values are mandatory. The attribute and value may

be separated either by an equals sign (‘= ’) or an asterisks (‘ * ’). The former indicates that

the attribute is mandatory, the latter indicates that the attribute is optional (and thus can

be disregarded at the receiver’s whim). Implementing this in a relational database would

pose a very special challenge: typically, a hard link exists between any given value in a

field. The notion of optional values doesn’t seem to exist in the realm of relational

databases. The only method of which I can think that might support this would be some

sort of encoding scheme, whereby fields were marked optional or not. This could consist

of an extra “ optional-status” field for every other field in the relation, or as an additonal

integer field that acts as an “ optional-mask” . Fortunately, for the purposes of

Ameritech’s use of TACACS+, only the mandatory attribute value pairs are ever used.

This, this implementation will only consider the mandatory attribute-value pairs.

ECES433: Final Project December 3, 1998

Bringing an RDBMS to TACACS+ Page 6 of 74 Andy Reitz (reitz@ces.cwru.edu)

The exact types of attributes that are contained in an authorization record are

variable and extensible, based upon the requirements of the NAS and the customer. In

general, the entities included in this relation will cover areas such as access-control,

timeouts, and network addresses.

|�}~}n�>�T���g�I�����
The accounting table is a repository for all of the log-style type data that a

TACACS+ server generates during the normal course of operation. The basic types of

data logged falls into three separate categories (or types):

� START – Indicates that a particular service is about to begin.� STOP – Indicates that a given service has stopped.� UPDATE – Indicates that a given service is still in progress, and that
there is some new data to be considered in this session.

Although these records don’t inherently have a state, as the TACACS+ server logs them,

it is possible (and, as it turns out, very useful) to draw states from the raw information.

Using the START and STOP records, combined with the task_id and NAS-hostname, it is

possible to account for a call. Basically, a call is one user session, from the initial

connection, to when they finally end the connection by hanging-up. Since this state

information is so useful (just about all of the accounting queries revolve around this), it

makes sense to split the accounting information into two tables: one filled with the raw

data received from TACACS+, the other consisting of the constructed call records. This

would be implemented via some sort of transaction, that culls the call records from the

raw data, and stores said records in a new table.

Unfortunately, because life is unpredictable, it isn’ t always true that there will be

a corresponding START record for every START record. The following list explains all of

the possibilites that exist:

ECES433: Final Project December 3, 1998

Bringing an RDBMS to TACACS+ Page 7 of 74 Andy Reitz (reitz@ces.cwru.edu)

�����~�P�I�T�l�'�n�T�������J���$���'���T���$�I�I���7 �¡£¢+�¤�¥���n�>�¦��§
1. The login attempt failed before authentication (or authorization, as the

case may be) succeeded. This could be identified by the fact that all of the
regular byte counters will be zero.

2. The user attempted to login using a userid that wasn’t found in the system.
The TACACS+ server will log this type of request as a STOP record.

3. The associated START record was in fact generated by the NAS, but was
lost in transit to the TACACS+ server. There is no way to reliably detect
such an occurrence.

¨�©�ª~ªP«I¬Tl®'¯n°T±�ª�®�ªJ²�©$³�°'´�°Tµ�¶$I«Iµ�¶7·�¸�¹�ºT¸b³¥®�¯n©>³¦´�»
1. The call is still active.

2. The call has stopped, but the associated STOP record was lost.

Thus, for these reasons, procuring a call state from the raw data isn’ t always possible.

Consequently, any records that were left in the original raw table could be analyzed

separately.

¼�½¿¾�ÀlÁ�Â$Ã¦Á>Ä�Å

Authentication

userid
relation

Authorization

Raw Accounting

many
attributes

Calls Completed

userid

userid
many

attributes
many

attributes

task_id
NAS-

hostname

many
attributes

In summary, this diagram gives a “ feel” to initial design, and in fact presents

some information that hasn’t yet been discussed (such as the potential keys for the

relations). The Authentication and Authorization relations are related through the userid

ECES433: Final Project December 3, 1998

Bringing an RDBMS to TACACS+ Page 8 of 74 Andy Reitz (reitz@ces.cwru.edu)

attribute, in a one-to-one relationship. Basically, we require that for every user record that

exists in the Authentication relation, that a corresponding record exist in the

Authorization relation (although, all of the authorization-specific values may be NULL, if

the customer wishes). It’s important to note that the “ userid relation” doesn’t exist

anywhere else in the database other than in the ER diagram. It is simply a visual method

for displaying the link between the Authentication and Authorization relations.

The accounting relations aren’ t actually linked by any attributes in the database.

Instead, their link is a conceptual one. Because the Calls_Completed table is generated

from the Raw_Accounting table, it makes sense to think of these two tables as related,

when in actuality, they don’t have a hard link.

The following is a listing of possible queries, broken down by service-type, and

ordered by frequency of arrival.

Æ�Ç�ÈgÉ�ÊTË�ÈgÌlÍnÎ�ÈgÌlÏ>ËYÐ
1. Emulate an Authentication request – search for a user, and return his/her values.

2. Determine the total number of users, as well as the number of active users (those who
have a password other than the default).

3. Display a list of users that have at least one password set to “ tempass1” . This is the
default password, set when an account is first created. Thus, this query can be used to
show which users haven’t used their accounts as of yet, which could lead to a
potential security issue.

4. Find all users that have both the special “ admin” type attribute, as well as an
uninitialized password. This is a very big security hole.Ñ�Ò�ÓgÔ�Õ>ÖB×lØnÙ�Óg×lÕ>ÚYÛ

5. Emulate an Authorization request – search for a user, and return his/her attributes.

6. Display users of type admin that have very permissive security settings.

7. Display a list of “ secure” userid’s – those that have values for both the inacl, and
outacl attributes. Furthermore, their routing attribute should be set to false.

8. Display a list of all users who have very “ limited” access – i.e. their timeout value is
less than or equal to 60 minutes.Ü�Ý~ÝnÞ>ßTà�ágâIà�ã�ä

9. Display a listing of users that are logged in on a given NAS for a given time period.

ECES433: Final Project December 3, 1998

Bringing an RDBMS to TACACS+ Page 9 of 74 Andy Reitz (reitz@ces.cwru.edu)

10. Display a “ call history” (complete list of calls) for a given user.

11. Find the last login for every user, sorted in reverse order.

å+æ�çTèIé!ê¿ë�ì/í!æ�îIïGð@èIë\êGï�î�å+ïGð_ï�ñGïDç&æ
In the section that follows, I will attempt to actually design the database. This will

involve designing the schema for each relation, showing the appropriate SQL for each

schema, and also re-visiting the potential queries above. Again, this task will be

partitioned, and each relation will be analyzed separately.

ò�ó�ôgõ�öT÷�ôgølùnú�ôgølû>÷Yü
As previously discussed, there are two different methods for handling the

complex TACACS+ authentication structure. One method is to attempt to emulate all of

the options supported as well as can be supported in a relational database. The conceptual

schema (and associated discussion) for this approach follow:

Full_Authentication (userid: string,
login: string,
secondary_login_type: string,
service1: string,
protocol1: string
protocol1_param: string
service2: string,
protocol2: string
protocol2_param: string
service3: string
protocol3: string
protocol3_param: string)

The value of the userid attribute represents a unique user in this particular

authentication table. This userid designates the start of a record in the config-file format,

and each user may have a variable number of configuration-type parameters associated

with him/her. The login attribute specifies that the user has the capability to login to the

remote network. The secondary_login_type attribute is optional, and can specify a

different sort of login protocol to be used. Possible values include pap, chap, and ms-

ECES433: Final Project December 3, 1998

Bringing an RDBMS to TACACS+ Page 10 of 74 Andy Reitz (reitz@ces.cwru.edu)

chap. If a secondary_login_type isn’ t specified for a user, the NAS may then revert to the

value contained in the regular login attribute in order to authenticate the user.

The final set of attributes represents an attempt to deal with the arbitrary and

variable nature of the TACACS+ authentication configuration structure. Basically,

TACACS+ allows for an arbitrary number of service attributes, and each service attribute

may have further protocol attributes embedded within it. This is where object-relational

databases would really be useful, but since I don’ t have that, the appropriate behavior can

be emulated (to a certain extent) by including multiple corresponding service and

protocol attributes.

Another possible way to design the Authentication schema is to implement only

the attributes that Ameritech requires for the daily use of their TACACS+ servers. While

this approach is less flexible, it will readily support the TACACS+ servers that are in the

field today, and speed the implementation of the RDBMS. Thus, I will implement this

project based around the following conceptual schema:

Authentication (userid: string
name: string
login: string
member: string
chap: string
pap: string
type: string
global: string)

The userid and login attributes are the same as above. The pap and chap attributes

are derived from the secondary_login_type from above, and hence contain similar

functionality. The name attribute is simply a text string that lists the user’s full name. The

member attribute associates the particular user with a group. A user inherits all AV pairs

from all groups of which it is a member. If the AV pairs conflict, then their own local

ECES433: Final Project December 3, 1998

Bringing an RDBMS to TACACS+ Page 11 of 74 Andy Reitz (reitz@ces.cwru.edu)

values will take precedence over group values, and group values will take precedence in

the order that they are listed. Today, Ameritech only uses one group, and all users are

placed in said group. The format of a group looks something like this:

gr oup = t empl at e {
 Ser v i ce = ppp pr ot ocol = l cp { }
 Ser v i ce = ppp pr ot ocol = i p { }
}

In this case, the group contains the service parameters necessary in order to define the

PPP service that is offered to the remote client. For the time being, since there is only one

group, there isn’ t a need to store it in a separate relation. In the future, it might be more

flexible to store the group information in a separate relation, so that those queries could

gain a more accurate understanding of a particular user’s profile.

The last two attributes that deserve discussion are type and global. The type

attribute is optional, and is used to specify whether-or-not the user is of a special type,

which entitles them to special privileges. Currently, only the special “ admin” type is

supported. This type allows the user to use the administration client, in order to

add/modify/delete users on the system. Finally, the value of the global attribute is a

password that can be applied to any authentication method. Apparently, the implementers

of TACACS+ at Ameritech learned about the global attribute after a large investment had

been made in storing passwords in their individual authentication formats, so both forms

were kept. Thus, for completeness, this project has been written to support both the

legacy and newer global password storage mechanisms.

ýTþ+ÿ��������	�
������������	�
�����
��������������������	�������	�
�! "�#���$���&%

CREATE TABLE Aut hent i cat i on(user i d VARCHAR2(11),
name VARCHAR2(30),
l ogi n VARCHAR2(18),
member VARCHAR2(10),
chap VARCHAR2(18),
pap VARCHAR2(18),
t ype VARCHAR2(5),

ECES433: Final Project December 3, 1998

Bringing an RDBMS to TACACS+ Page 12 of 74 Andy Reitz (reitz@ces.cwru.edu)

gl obal VARCHAR2(18),
PRIMARY KEY (user i d)) ;

')(�*�+�,
-/.	0�1�*�.	,
2&3
For the purposes of this assignment, the conceptual Authorization schema will be

as follows:

Authorization (userid: string,
inacl: integer ,
outacl: integer ,
timeout: integer ,
idletime: integer ,
addr: string,
routing: boolean,
route: string)

The userid attribute corresponds to an userid value in the authentication table.

Basically, this means that it is a foreign key in the Authorizatoin relation. Thus, there can

only be one authorization record per userid, since the userid must be unique in the

authentication table. The inacl and outacl refer to inbound and outbound access lists,

identified by a unique integer. Since these access lists are protocol dependent, and thus

can be very complicated (For example, Cisco allows them to operate on layer four of the

OSI TCP/IP model), they tend to be stored in the NAS. This both eases NAS

implementation and increases performance, but impinges upon administrator

maintainability of the system. The timeout and idletime attributes take integer values that

represent a span of time, in seconds. The timeout parameter represents an absolute time

for the session. For example, the CWRUnet free PPP dial-in pool uses a timeout of one

hour, at which point the user will be automatically disconnected. The idletime attribute

specifies how long a user may stay connected without displaying any activity (basically,

data transferred). When this amount of time has been exceeded, the user will be

disconnected by the NAS.

ECES433: Final Project December 3, 1998

Bringing an RDBMS to TACACS+ Page 13 of 74 Andy Reitz (reitz@ces.cwru.edu)

The final three attribute-value pairs deal with the network-layer configuration.

The exact format and meaning of these parameters is determined by the protocol

specified in the authentication database. The addr attribute specifies a network address,

to be used by the remote host when connecting via SLIP or PPP/IP. The boolean routing

attribute specifies whether-or-not the NAS is supposed to both send or receive routing

information from the client. The route parameter specifies any network routes that should

be configured automatically when the user-session is first established.

4576�8�9�:�;	<
9�<=�>�?�>�@	A
=�A�B
>�C�<�D�E�>�C�A
F/@	G�?�>�@	A
=!H"I#C�<$9�?&J

CREATE TABLE Aut hor i zat i on (user i d VARCHAR2(11),
i nacl I NTEGER,
out acl I NTEGER,
t i meout I NTEGER,
i dl et i me I NTEGER,
addr VARCHAR2(15),
r out i ng VARCHAR2(5),
r out e VARCHAR2(49),
FOREIGN KEY (user i d) REFERENCES Aut hent i cat i on) ;

KML�L�N
OP�Q�RSP�TVU
We will begin by dissecting the raw_accounting table. For the purposes of this

project, we will only deal with the START and STOP records, primarily because

Ameritech uses very few UPDATE records. In this scenario, the START and STOP

records share a common base, a set of fields that start off the record. However, the STOP

records add many additional statistical fields to their record. Consequently, in order to

ease the analysis of these records, a conceptual schema for the common base will be

presented first, and then the additional schema for the STOP record will be analyzed later.

The following is the conceptual schema for the common accounting base:

Raw_Accounting: (date: date,
NAS-hostname: string,
userid: string,
NAS-port: string,
remote_phone_number: integer ,
type: string,

ECES433: Final Project December 3, 1998

Bringing an RDBMS to TACACS+ Page 14 of 74 Andy Reitz (reitz@ces.cwru.edu)

NasUserName: string,
task_id: integer ,
timezone: string,
service: string)

The date attribute records the current system time when the transaction was

received, stored in a modified UNIX ctime format (sans timezone). Unfortunately, the

date cannot be considered as a key for this relation, because it is possible for the

TACACS+ server to process multiple requests at the same instant of time (the granularity

is only seconds). Furthermore, even if the granularity of the date attribute is increased, it

still cannot be a key – consider the possibility that multiple TACACS+ servers are using

the same RDBMS database for storing their accounting information. In this scenario,

multiple transactions could actually occur at the exact same time.

The NAS-hostname attribute is an identifier that specifies that NAS device that

generated the message. Although it does not have to be unique (it’s possible for two

different NAS devices to have the same hostname), it typically is, because it’s much

easier on the administrator. The userid attribute is a foreign key into the authentication

relation, which specifies the user that has initiated the current transaction. The NAS-port

attribute is a string that specifies which port (typically, a NAS will have to ability to

handle many simultaneous connections via different physical ports) the current session is

using.

The remote_phone_number field is generated by the NAS, using CallerID.

Basically, the phone number that the client uses in order to connect to the NAS is logged.

This information can be used during the authentication process, in order to further

establish the user’s identity, and also for security auditing purposes, which is why it is

relevant to the accounting table. It should also be noted that in some instances (but not

ECES433: Final Project December 3, 1998

Bringing an RDBMS to TACACS+ Page 15 of 74 Andy Reitz (reitz@ces.cwru.edu)

all), the NAS will append a ‘ /’ , followed by the number within the NAS that was dialed

(sans area code) in order to establish the connection. This functionality could be used in

order to share a PRI1 line between multiple customers in the future, but is currently

unused by Ameritech today, so I will ignore it for the course of this assignment.

The type field contains one of three text strings: “ START” , “ STOP” , or

“ UPDATE” . The NasUserName contains the same data as the name field from the

authentication table. The redundency that this attribute causes will be further discussed in

the section dealing with the integrity constraints of this design.

The task_id attribute is a unique value (per NAS) assigned to every session that

the NAS starts. Thus, it is a very important value, because it can be used to ensure that

any given accounting records “go together” when considering the session as a whole.

However, this value alone cannot be considered a key for the relation, because multiple

accounting log entries will make reference to the same task_id. For example, there will

be a START, STOP, and an arbitrary number of UPDATE records for every task_id in

the system. However, I believe it might be feasible to combine the date, task_id, and

NAS-hostname attributes in order to form a key for this relation. This key assumes that a

NAS will not process multiple requests for the same task_id in a given instant of time.

Unfortunately, during the implementation, this assertion didn’ t hold, so I decided to not

maintain a proper key for this relation.

Finally, the timezone attribute specifies the current timezone (such as UTC) for

the given date value. Why this isn’ t just included in the date attribute I’ ll never know.

The very last attribute specifies the service used, because it is possible for a user to

choose their type of service dynamically at connect time.

ECES433: Final Project December 3, 1998

Bringing an RDBMS to TACACS+ Page 16 of 74 Andy Reitz (reitz@ces.cwru.edu)

An accounting STOP record adds the following attribute-value pairs, for

statistical purposes:

Accounting_stop: (protocol: string,
addr: string,
disc-cause: integer ,
disc-cause-ext: integer ,
pre-bytes-in: integer ,
pre-bytes-out: integer ,
pre-paks-in: integer ,
pre-paks-out: integer ,
bytes_in: integer ,
bytes_out: integer ,
paks_in: integer ,
paks_out: integer ,
pre-session-time: integer ,
elapsed_time: integer ,
data-rate: integer)

The protocol attribute is a subset of a service, and is typically also detailed in the

authentication table. But, since the user may dynamically choose a service, it is also

possible that the protocol choice may be dynamic, so it must be logged in the event of a

STOP record. The addr attribute has the same properties as in the authorization table.

The disc-cause and disc-cause-ext attributes highlight the reasons as to why the session

was terminated (hence generating the STOP record). The value for the disc-cause

attribute will be a number, which represents a specific disconnection code. The possible

values for the disc-cause-ext attribute are extended off of the disc-cause attribute, and are

used for vendor-specific purposes.

Now, we need to break down the actual statistics that are reported. Any attribute

with a “ pre-“ modifier represents any transactions that occur before authentication

succeeds. Thus, everything else represents data that occurs during the course of the actual

connection. With that in mind, bytes-in and bytes-out refer to the number of input bytes

and output bytes, respectively, transferred between the NAS and the remote client. The

ECES433: Final Project December 3, 1998

Bringing an RDBMS to TACACS+ Page 17 of 74 Andy Reitz (reitz@ces.cwru.edu)

paks-in and paks-out attributes represent the number of data packets that are input and

output, respectively, during the course of the connection.

Similarly, the pre-session-time attribute represents the number of seconds that

transpire between the time when the connection is first initiated to when it is finally

authenticated. The elapsed-time attribute represents the duration of the connection, and is

useful for NAS devices that do not maintain any sort of internal time. Finally, although

the data-rate AV pair has been depreciated in more recent revisions of TACACS+, it is

still used by Ameritech in order to report the speed of the connection between the NAS

and the remote client.

WX7Y�Z�[�\�]	^
[�^_�`�a�`�b	c
_�c�d
`�e�^gf
a�h�i$jMk�k�c
l_�`�bS_�monpkqe�^
[�a&r

CREATE TABLE Raw_Account i ng (l og_dat e DATE,
NAS_host name VARCHAR2(11),
user i d VARCHAR2(11),
NAS_por t VARCHAR2(16),
r emot e_phone_number CHAR(10),
t ype VARCHAR2(6),
NasUser Name VARCHAR2(30),
t ask_i d INTEGER,
t i mezone VARCHAR2(3),
ser v i ce VARCHAR2(3),
pr ot ocol VARCHAR2(3),
addr VARCHAR2(15),
di sc_cause INTEGER,
di sc_cause_ext INTEGER,
pr e_byt es_i n INTEGER,
pr e_byt es_out INTEGER,
pr e_paks_i n INTEGER,
pr e_paks_out INTEGER,
byt es_i n INTEGER,
byt es_out INTEGER,
paks_i n INTEGER,
paks_out INTEGER,
pr e_sessi on_t i me INTEGER,
el apsed_t i me INTEGER,
dat a_r at e INTEGER) ;

sutvSvxwzy&s{&|~}�v	�������M�
During the course of this design, allusions have been made to another accounting

table, used to store actual calls that the users completed. Now that the full schema for the

Raw_Accounting relation has been developed, it is possible to discuss this second

ECES433: Final Project December 3, 1998

Bringing an RDBMS to TACACS+ Page 18 of 74 Andy Reitz (reitz@ces.cwru.edu)

accounting relation. Basically, the Calls_Completed relation contains attempts to

maintain all of the important attributes from a Raw_Accounting record. A presentation of

the exact schema will clarify this point:

Calls_Completed (userid: string,
NAS-hostname: string,
NAS-port: string,
start_time: date,
stop_time: date,
duration: date,
tot-bytes-in: integer ,
tot-bytes-out: integer ,
tot-paks-in: integer ,
tot-paks-out: integer)

Most of the fields in this table have already been explained, but a few are worth some

special attention. The start_time, stop_time, and duration fields all revolve around the

timing for the call. The start_time is culled directly from the START record, and the

stop_time is taken from the STOP record. The duration is actually the difference between

the aforementioned start and stop times.

��7���������	�
������������	�
�����
�����!���S�x�z�&��������	���������"�q���
���&�

CREATE TABLE Cal l s_Compl et ed (user i d VARCHAR2(11),
NAS_host name VARCHAR2(11),
NAS_por t VARCHAR2(16),
s t ar t _t i me DATE,
s t op_t i me DATE,
dur at i on INTEGER,
t ot _byt es_i n INTEGER,
t ot _byt es_out INTEGER,
t ot _paks_i n INTEGER,
t ot _paks_out INTEGER,
PRIMARY KEY (cal l i d)) ;

������� ���¡	¢£¥¤§¦��¨©¡ª��«7¨���¬$¡x«¥¡	����V®
Now it is time, once again, to revisit the potential queries that were listed in the

data model description. These queries now need to be anayzed (and ordered) in terms of

their cost-of-execution. This involves considering the cost the basic query operations, and

then examining which operations will be necessary in each query. None of these queries

ECES433: Final Project December 3, 1998

Bringing an RDBMS to TACACS+ Page 19 of 74 Andy Reitz (reitz@ces.cwru.edu)

make use of the Cartesian product operator, and only a few of them use the join operator.

As before, the list of queries will be examined by relation, with the most costly queries

having the higher number.

¯)°�±�²�³´�±�µ	¶�·�±�µ	¸
´&¹
1. Determine the total number of users, as well as the number of active users (those who

have a password other than the default).

2. Display a list of users that have at least one password set to “ tempass1” . This is the
default password, set when an account is first created. Thus, this query can be used to
show which users haven’t used their accounts as of yet, which could lead to a
potential security issue.

3. Find all users that have both the special “ admin” type attribute, as well as an
uninitialized password. This is a very big security hole.

4. Emulate an Authentication request – search for a user, and return his/her values.
º)»�¼�½�¾
¿/À	Á�Â�¼�À	¾
Ã&Ä
5. Display users of type admin that have very permissive security settings.

6. Display a list of “ secure” userid’s – those that have values for both the inacl, and
outacl attributes. Furthermore, their routing attribute should be set to false.

7. Display a list of all users who have very “ limited” access – i.e. their timeout value is
less than or equal to 60 minutes.

8. Emulate an Authorization request – search for a user, and return his/her attributes.
ÅMÆ�Æ�Ç
ÈÉ�Ê�ËSÉ�ÌVÍ
9. Find the last login for every user, sorted in reverse order.

10. Display a “ call history” (complete list of calls) for a given user.

11. Display a listing of users that are logged in on a given NAS for a given time period.

Î�Ï
Ð"Ñ�ÒÔÓ"ÕÖÐ"×ÙØÛÚÜÏVÝ#Ð�Ó/ÞÛÕßÏ
Ð�Ý
The integrity constraints that can be enforced consist of key values and SQL

“CHECK” operations. Given this, we’ ll proceed to analyze the integrity constraints for

each of the three separate categories of data:

à)á�â�ã�äå�â�æ	ç�è�â�æ	é
å&ê
In this table, the userid field is a primary key. Each userid must be unique for a

customer, and since each customer has their own table, each userid must be unique within

a table. If userid’s were not unique, it’s obvious to see how the TACACS+ server would

ECES433: Final Project December 3, 1998

Bringing an RDBMS to TACACS+ Page 20 of 74 Andy Reitz (reitz@ces.cwru.edu)

break. When an authentication request comes in, the server attempts to retrieve the proper

record from the proper authentication table, based upon the only attribute that it currently

has – the userid. Hence, if multiple records with the same userid existed, only the first

such record would ever be found, and users with subsequent records would be denied the

ability to login to the NAS.

The only interesting application of the SQL “ CHECK” functionality in this table

might be to make sure that every user record has at least one password configured. The

login, pap, chap, and global attributes are all used to specify passwords, but any one of

them may take on a NULL value, depending on the user requirements. However, in order

to authenticate with the NAS, at least one password is necessary. Thus, records that do

not contain at least one password should be allowed to enter the database. However, it is

also possible to rely on Ameritech’s password administration utility in order to enforce

this constraint. For the sake of performance, it makes sense to rely on the assumption that

we will be given valid data to work on (since it is all coming from a computer program,

and not directly from users). Thus, the CHECK operation will not be implemented.

ë)ì�í�î�ï
ð/ñ	ò�ó�í�ñ	ï
ô&õ
The authorization tables require the use of the userid attribute, as specified in the

authentication table. Thus, the userid attribute in this table must be a foreign key with

respect to the userid attribute in the authentication table. Furthermore, it’s possible for a

user record to not need any special authorization parameters, so no SQL CHECKs can

accurately be performed on this data set.

öM÷�÷�ø
ùú�û�üSú�ýVþ
This raw data in this category has no integrity constraints. Typical constraints,

such as the userid attribute, don’t hold in this relation – because it’ s possible for the

ECES433: Final Project December 3, 1998

Bringing an RDBMS to TACACS+ Page 21 of 74 Andy Reitz (reitz@ces.cwru.edu)

system to log userid’s that don’ t exist in the authentication table, for example. However,

when the call table is constructed, some integrity constraints will magically appear. For

any given call, the combination of the task_id and NAS-hostname must be unique. Thus,

these two fields together can form a superkey for this relation. (Note that each NAS

generates it’s own task_id’s, so the task_id cannot be a key all by itself).

The issue of data redundency should be addressed when discussing the

Accounting relations, since it contains much redundant data. The raw_accounting table

records values that may repete those stored in the authentication table, for example (such

as the userid and name). At first glance, the inclusion of the NasUserName attribute

(which parallels the authentication name attribute) in the raw accounting information

seems very odd and redundant. However, upon further consideration, an argument for the

inclusion of this field appears. Basically, since each accounting record represents a

transaction that occurred at a fixed point and time, it is therefore necessary to capture the

corresponding name value for that given period of time. If this attribute were made

dynamic (basically, this data could be queried-for whenever it was needed), it could be

problematic if the user changes his/her name value. The same can be said for the

inclusion of the static userid field: if a userid were removed from the Authentication

table, we would still want to maintain the accounting information that the user generated.

Or even still, we want to be able to account for transactions where an end-user attempts

to use an userid that isn’ t currently in the Authentication table.

ÿ����������
	�����������������������������
The functional dependencies in this database design appear to be weak, at best. It

seems that although the TACACS+ data contains many intrinsic functional dependencies,

it isn’ t really possible to deal with these from a database design perspective. In general,

ECES433: Final Project December 3, 1998

Bringing an RDBMS to TACACS+ Page 22 of 74 Andy Reitz (reitz@ces.cwru.edu)

there are only two different sorts of functional dependencies in this database: one exists

between the Authentication and Authorization relations, and the other is actually a class

of dependencies, that are intrinsic to the TACACS+ data.

The functional dependency that exists between the Authentication and

Authorization tables revolves around the sole attribute that they share – namely the

userid. I have connected these two relations together by making the userid a primary key

in the Authentication relation, and a foreign key in the Authorization relation. Thus, the

RDBMS will ensure that SQL DELETE or UPDATE statements don’t violate the

integrity of matching records. Thus, from this dependency we realize two different

classes of anomalies: those that occur during unmatched insertions, and those that occur

when unmatched deletions are attempted.

The case of insertion anomalies can be thought of thusly: the only way that an

insertion anomaly can occur is if a record is inserted into the one relation, but not the

other. The RDMBS will allow the case that the record is inserted into the Authentication

relation but not the Authorization relation. However, it will block (with an error) the case

that when a record is inserted into Authorization before Authentication. In either case,

these possibilites can only come about due to programmer error, not user error.

Ameritech has developed a sort of “ Administration Client” , by which users are actively

maintained on the system. Thus, it is up to this client to insert the proper records in the

proper order. We’ ll assume that programmer error will not pose a very terrible problem

(if an error is encountered, it will be fixed).

Fortunately, the case of deletion anomalies can be handled more directly in SQL.

Since this type of anomaly occurs frequently in databases, SQL92 provides the “ON

ECES433: Final Project December 3, 1998

Bringing an RDBMS to TACACS+ Page 23 of 74 Andy Reitz (reitz@ces.cwru.edu)

DELETE CASCADE” construct, which can be applied to any relations that have a

foreign key. Basically, this construct allows the RDBMS to automatically clean-up

whenever a tuple is deleted from the specified relation. Thus, we can ensure, at the

RDBMS level, that no deletion anomalies will occur, thanks to this construct. This

construct modifies the previously stated Authorization SQL, so it now appears like this:

CREATE TABLE Aut hor i zat i on (user i d VARCHAR2(11),
i nacl INTEGER,
out acl INTEGER,
t i meout INTEGER,
i dl et i me INTEGER,
addr VARCHAR2(15),
r out i ng VARCHAR2(5),
r out e VARCHAR2(49),
FOREIGN KEY (user i d) REFERENCES Aut hent i cat i on
 ON DELETE CASCADE) ;

The final class of dependencies to be discussed revolves around those that are

intrinsic to the TACACS+ dataset. For example, several of the attributes in the

Accounting relation depend upon their respective values in the Authentication, or

Authorization relations. One such attribute is the NasUserName value, which is culled

directly from the name value in the Authentication relation. I was able to get a clear view

of these dependencies when I tried to implement my scripted faux data – many of the

values that I generated didn’ t make sense, because I didn’ t reference previously generated

values for the other relations. However, beyond recognizing that these dependencies

exist, there isn’ t much that can be done to minimize them on the RDBMS level. They

seem to all be trivial dependencies (i.e. one value directly influences another), and as

such, don’t pose a major problem to my database design.

ECES433: Final Project December 3, 1998

Bringing an RDBMS to TACACS+ Page 24 of 74 Andy Reitz (reitz@ces.cwru.edu)

������� �"!�#%$�&
��#'��(*),+�)�-
.�(�/
0�1�243�576 8:9<;�248:57=�>
1. Emulate an Authentication request – search for a given userid, and return the values

found.

RA: ()tionAuthenticauseridgivenuserid ’_’=σ

TRC: { }’_’. useridgivenuseridUtionAuthenticaUU =∧∈

SQL: SELECT *
FROM Aut hent i cat i on
WHERE user i d = “ gi ven_user i d”

2. Display a list of users (userid and name) that have at least one password set to the
default, “ tempass1” .

RA: ()
()

 ∨

=∨=

=∨=

tionAuthentica

tionAuthentica
nameuserid

tempass1’cleartext’globaltempass1’cleartext’chap

tempass1’cleartext’paptempass1’cleartext’login

, σ
σ

π

TRC:

î

=
∨=

∨=
∨=

∧∈

’1’.

’1’.

’1’.

’1’.

.

.

tempasscleartextglobalA

tempasscleartextchapA

tempasscleartextpapA

tempasscleartextginloA

tionAuthenticaA
nameA

useridA

SQL: SELECT A. user i d, A. name
FROM Aut hent i cat i on A
WHERE l ogi n = ‘ c l ear t ext t empass1’
 OR pap = ‘ c l ear t ext t empass1’
 OR chap = ‘ c l ear t ext t empass1’
 OR gl obal = ‘ c l ear t ext t empass1’ ;

3. Find all users that are administrators (i.e. their type attribute is set to “ admin”) and
have an uninitialized password.

RA: ()
()

()

∧

 ∨

=

=∨=

=∨=

tionAuthentica

tionAuthentica

tionAuthentica

inadmtype

namuserid

""

tempass1’cleartext’globaltempass1’cleartext’chap

tempass1’cleartext’paptempass1’cleartext’login

,

σ

σ
σ

π

TRC:

î

=
∨=

∨=
∨=

∧=∧∈

’1’.

’1’.

’1’.

’1’.

’’..,.

tempasscleartextglobalA

tempasscleartextchapA

tempasscleartextpapA

tempasscleartextginloA

nadmitypeAtionAuthenticaAnameAuseridA

SQL: SELECT A. user i d, A. name
FROM Aut hent i cat i on A

ECES433: Final Project December 3, 1998

Bringing an RDBMS to TACACS+ Page 25 of 74 Andy Reitz (reitz@ces.cwru.edu)

WHERE A. t ype = ‘ admi n’
 AND A. user i d I N (
 SELECT A2. user i d
 FROM Aut hent i cat i on A2
 WHERE A2. l ogi n = ‘ c l ear t ext t empass1’
 OR A2. pap = ‘ c l ear t ext t empass1’
 OR A2. chap = ‘ c l ear t ext t empass1’
 OR A2. gl obal = ‘ c l ear t ext t empass1’)

4. Determine the total number of users, as well as the number of active users.

SQL: SELECT COUNT (A1) AS t ot al , COUNT (A2) AS act i ve
FROM Aut hent i cat i on A1, Aut hent i cat i on A2
WHERE A2. user i d IN (
 SELECT A3. user i d
 FROM Aut hent i cat i on A3
 WHERE A3. l ogi n <> ‘ c l ear t ext t empass1’
 OR A3. pap <> ‘ c l ear t ext t empass1’
 OR A3. chap <> ‘ c l ear t ext t empass1’
 OR A3. gl obal <> ‘ c l ear t ext t empass1’)

?�@�A4B�C7D E:F<G�A4E:C7H�I
5. Emulate an Authorization request – search for a given userid, and return the values

found.

RA: ()ionAuthorizatuseridgivenuserid ’_’=σ

TRC: { }’_’. useridgivenuseridUionAuthorizatUU =∧∈

SQL: SELECT *
FROM Aut hor i zat i on
WHERE user i d = ‘ gi ven_user i d’ ;

6. Display userid’s that are “ secure” (have values for inacl and outacl attributes;
routing attribute that is false).

RA: ()()ionAuthorizatFALSEroutingNULLoutaclNULLinacluserid =∧<>∧<>σπ

TRC:

î

=∧<>
∧<>∧∈

FALSEroutingNULLoutaclZ

NULLinaclZionAuthorizatZuseridZ

.

..

SQL: SELECT user i d
FROM Aut hor i zat i on
WHERE i nacl IS NOT NULL AND out acl IS NOT NULL
 AND r out i ng = ‘ FALSE’ ;

7. Display all userids who have a timeout value that is less than or equal to 60 minutes.

RA: ()()ionAuthorizattimeoutuserid 3600≤σπ

TRC: { }3600.. ≤∧∈ timeoutZionAuthorizatZuseridZ

SQL: SELECT user i d
FROM Aut hor i zat i on

ECES433: Final Project December 3, 1998

Bringing an RDBMS to TACACS+ Page 26 of 74 Andy Reitz (reitz@ces.cwru.edu)

WHERE t i meout <= 3600;

8. Display a list of administrators who have very permissive security settings.

RA: ()()
()

∞ =

=∨=∨=

tionAuthentica

ionAuthorizat

nadmitype

TRUEroutingNULLoutaclNULLinacl

nameuserid
’’

, σ
σ

π

TRC:

()

î

=∨
=∨

=
∧

=∧∈

∃∧∈

TRUEroutingZ

NULLoutaclZ

NULLinaclZ

nadmitypeAtionAuthenticaA

AionAuthorizatZ
nameA

useridZ

.

.

.

’’.

.

.

SQL: SELECT Z. user i d, A. name
FROM Aut hor i zat i on Z, Aut hent i cat i on A
WHERE A. user i d = Z. user i d
 AND A. t ype = ‘ admi n’
 AND (Z. i nacl IS NULL
 OR Z. out acl IS NULL
 OR Z. r out i ng = ‘ TRUE’) ;

9. Query to find the “ worst” administrators, basically those that both have the default
password, and permissive authorization settings.

RA: ()()
()

()
()

()

∧

 ∨

∩

∞

=

=∨=

=∨=

=

=∨=∨=

tionAuthentica

tionAuthentica

tionAuthentica

tionAuthentica

ionAuthorizat

inadmtype

nameuserid

nadmitype

TRUEroutingNULLoutaclNULLinacl

nameuserid

""

tempass1’cleartext’globaltempass1’cleartext’chap

tempass1’cleartext’paptempass1’cleartext’login

,

’’
,

σ

σ
σ

π

σ
σ

π

TRC:

()

î

=
∨=

∨=
∨=

∧=∧∈

∩

î

=∨
=∨

=
∧

=∧∈

∃∧∈

’1’.

’1’.

’1’.

’1’.

’’.
.

,.

.

.

.

’’.

.

.

tempasscleartextglobalA

tempasscleartextchapA

tempasscleartextpapA

tempasscleartextginloA

nadmitypeAtionAuthenticaA
nameA

useridA

TRUEroutingZ

NULLoutaclZ

NULLinaclZ

nadmitypeAtionAuthenticaA

AionAuthorizatZ
nameA

useridZ

SQL: SELECT Z. user i d, A. name
FROM Aut hor i zat i on Z, Aut hent i cat i on A
WHERE A. user i d = Z. user i d

ECES433: Final Project December 3, 1998

Bringing an RDBMS to TACACS+ Page 27 of 74 Andy Reitz (reitz@ces.cwru.edu)

 AND A. t ype = ’ admi n’
 AND (Z. i nacl IS NULL
 OR Z. out acl IS NULL
 OR Z. r out i ng = ’ TRUE’)
INTERSECT
SELECT A. user i d, A. name
FROM Aut hent i cat i on A
WHERE (A. t ype=’ admi n’ AND A. l ogi n=’ cl ear t ext t empass1’) OR
 (A. t ype=’ admi n’ AND A. pap=’ cl ear t ext t empass1’) OR
 (A. t ype=’ admi n’ AND A. chap=’ cl ear t ext t empass1’) OR
 (A. t ype = ’ admi n’ AND A. gl obal =’ cl ear t ext t empass1’) ;

J�KLK<M7NPO�Q4R
O�S�T
10. Display a listing of users that are logged in on a given NAS for a given time period.

RA:

()() ()

()

∞

∞

=−
∧<∧=

>

AccountingRaw

tionAuthenticaCompletedCalls

NASgivehostnameNAS
timegivendateglostarttypedateglonameuserid

name
useridtimegiventimestop

datestop
datestart
nameuserid

_

_

’_’
’_’_’’_,,

,’_’_

_
,_
,,

σπ

πσπ

TRC:

()

()

î

=−
∧>

∧=
∧∈

∃

∨

=−
∧<

∧=
∧=

∧∈

∃

∧∈

’_’.

’_’_.

..

_

’_’.

’_’_.

’’.

..

_

_.

_.

.

.

NASgivenhostnameNASC

timegiventimestopC

useridAuseridC

CompletedCallsC

C

NASgivenhostnameNASR

timegivendategloR

STARTtypeR

useridAuseridR

AccountingRawR

R

tionAuthenticaA

timestopC

timestartC

nameA

useridA

SQL: SELECT A. user i d, A. name, C. st ar t _t i me, C. st op_t i me
FROM Aut hent i cat i on A, Cal l s_Compl et ed C
WHERE A. user i d = C. user i d
 AND C. st op_t i me > ’ gi ven_t i me’
 AND C. NAS_host name = ’ gi ven_NAS’
UNION
SELECT R. user i d, R. NasUser Name, R. l og_dat e, TO_DATE(NULL)
FROM Raw_Account i ng R
WHERE R. t ype = ’ START’
 AND l og_dat e < ’ gi ven_t i me’
 AND R. NAS_host name = ’ gi ven_NAS’ ;

This query makes several assumptions that should be explained. Firstly, in joining

the Authentication and Calls_Completed relations, it is assumed that the Authentication

table contains accurate names. Since this is only for user-presentation, so its significance

ECES433: Final Project December 3, 1998

Bringing an RDBMS to TACACS+ Page 28 of 74 Andy Reitz (reitz@ces.cwru.edu)

can be depreciated. The second assumption is made when records are gathered from the

Raw_Accounting table. The only START records that are in said table are those that don’t

have a corresponding STOP – the legitimacy of their state, however, is unknown. Thus, it

is entirely likely that this query will list tuples where no call is currently in progress.

However, since a direct query cannot be performed on the NAS, there really isn’ t any

way to know this information. Finally, this query assumes that the TACACS+ server logs

bad username login attempts as STOP records.

11. Find the last login for every user, sorted in reverse order.

RA: ()

()

 ∞
<

∧≥

−
−

tionAuthentica

CompletedCalls

nameuserid

periodstoptimestart
periodstarttimestart

timestartportNAS
hostnameNASnameuserid

,

’_’_
’_’_

_,
,,,

_

π

σ
π

TRC:

()

î

<
∧≥

∧=
∧∈

∃

∧∈
−
−

’_’_.

’_’_.

..

_

_.

.

.

,.

,.

periodendtimestartC

periodstarttimestartC

useridAuseridC

tionAuthenticaA

A

CompletedCallsC

timestartC

portNASC

hostnameNASC

nameA

useridC

SQL: SELECT C. user i d, A. name, C. NAS_host name, C. NAS_por t ,
 C. st ar t _t i me
FROM Cal l s_Compl et ed C, Aut hent i cat i on A
WHERE C. st ar t _t i me >= ’ st ar t _per i od’
 AND C. st ar t _t i me < ’ st op_per i od’
 AND C. user i d = A. user i d
ORDER BY C. st ar t _t i me DESC;

12. Display a list of “ malformed” logfile entries – unmatched START and STOP records
in the Raw_Accounting table.

RA: ()() ()()AccountingRawdategloSYSDATESTARTtypeSTOPtype

typeportNas
hostnameNas

eNasUserNamuserid _20_’’’’

,
,

,, >−∧=∨=

−
−

σπ

ECES433: Final Project December 3, 1998

Bringing an RDBMS to TACACS+ Page 29 of 74 Andy Reitz (reitz@ces.cwru.edu)

TRC:

()()

î

>−∧=
∨=

∧∈

−
− 20_.’’.

’’.

_

.,

.

,.

,.

,.

dategloRSYSDATESTARTtypeR

STOPtypeR

AccountingRawR

portNASR

hostnameNASR

typeR

eNasUserNamR

useridR

SQL: SELECT user i d, NasUser Name, NAS_host name, NAS_por t , t ype
FROM Raw_Account i ng
WHERE t ype = ’ STOP’ ;

Due to problems with the Oracle SYSDATE function, as well as with comparing

data values of type “ DATE” in Oracle, the part of this query that dealt with the start

records wasn’t included. For the life of me, I just couldn’ t figure out how to drive the

SYSDATE function. In fact, during my travails, I manged to crash the SQL*Plus client

a number of times before finally removing that aspect of the query.

13. Display a “ call history” (complete list of calls) for a given user.

RA: ()CompletedCallsuseridgivenuserid _’_’=σ

TRC: { }’_’._ useridgivenuseridCCompletedCallsCC =∧∈

SQL: SELECT *
FROM Cal l s_Compl et ed
WHERE user i d = ‘ gi ven_user i d’

U�V�W�X Y[Z*\]\,^
_�^
W�`�_aY
In order to explore the realm of query optimizations that might apply to my

design, it is best to divide the following discussion into two parts: One discussing the

Authentication and Authorization relations, the other dealing with the Accounting

relations. The scope of the queries that deal with Authentication and Authorization are

some of the more complex within this project (they actually use the join operation). For

the data in its current configuration, the RDBMS must search on practically all of the

attributes: the only ones that are never the subject of search are name, addr, and route.

ECES433: Final Project December 3, 1998

Bringing an RDBMS to TACACS+ Page 30 of 74 Andy Reitz (reitz@ces.cwru.edu)

Requiring this many search keys, to be used together in a variety of different

combinations, creates a difficult indexing environment.

The easiest queries to evaluate are those that don’t require a join, and search

based upon one or two attributes. The next step up (in terms of complexity) is those

queries that don’t require a join, but search based upon a large number of attributes. The

next complexity level is comprised of those queries that require the use of the join

operation, but only search based upon a limited number of attributes. Finally, the most

complex queries of this set are those that require the use of both the join operation and

many search keys.

The reasoning behind this heirarchy is somewhat obvious – the number of disk

operations is directly proportional to the number of records that must be read. This

number of records is proportional to the size (join leads to a greater size) and efficiency

of the index structure (related to the number of search keys). Thus, the no join operation

and few search keys are used (as in query number one, for example), then an efficient

hash-based index structure can achieve an O(num_results) performance, even when the

number of records range in the thousands.

However, it may be possible to ensure a more consistent level of performance

across queries by modifying the schema for the Authentication and Authorization

relations. In principal, two possible modifications exist: the Authentication table could be

optimized by folding identical passwords into a single global attribute, or the

Authentication and Authorization relations could be combined into one relation. When a

client attempts to login to the network, TACACS+ searches through the Authentication

information for a password, in order to match that with the user’s request. TACACS+ is

ECES433: Final Project December 3, 1998

Bringing an RDBMS to TACACS+ Page 31 of 74 Andy Reitz (reitz@ces.cwru.edu)

very flexible in its password-searching approach – it allows the password information to

be in a number of locations. It first searches the user’s authentication record, looking to

see if a specific password has been defined for the authentication method that they are

attempting. For example, if a user is attempting to start a PPP session via CHAP2

password authentication, the TACACS+ server will first attempt to find a chap attribute

in the user’s authentication record. If no such attribute is found, it will then check for the

global attribute. If this attribute isn’ t found, it will then search for a CHAP attribute in

any groups to which the user claims membership. Failing this, it will then search these

groups for a global attribute. Thus, it’s possible to take advantage of this password-

searching heirarchy in order to reduce the number of attributes in the Authentication

relation.

Due to historical reasons, Ameritech’s current password-administration client

creates TACACS+ authentication records that contain the same password for the pap,

chap, login, and global fields. It then enforces this password duplicity across password

changes, so the state of these passwords seems to be fairly reliable. Thus, it is possible to

take a bit of a shortcut in the database design, by removing the pap, chap, and login

attributes, so that password authentication can rely solely on the global attribute. Thus,

any queries that attempted to determine if a user had an “ insecure” password would be

vastly simplified. Unfortunately, the problem with this optimization is that it unduly

limits future modifications to the password-administration client. For example, if

Ameritech decided to allow different pap and chap passwords in the future, not only

would the Authentication relation require modification, but so would most of the queries

that deal with this relation. Thus, a decision about future password flexibility needs to be

ECES433: Final Project December 3, 1998

Bringing an RDBMS to TACACS+ Page 32 of 74 Andy Reitz (reitz@ces.cwru.edu)

made in order to decide if this particular optimization should be made. For the purposes

of this design, the current structure will be left in place, in order to achieve the maximum

level of compatibility with Ameritech’s current TACACS+ infrastructure.

Another possible optimization concerns simply merging the Authentication and

Authorization relations. Currently, each relation doesn’t contain a very large number of

attributes (especially if all of the duplicate passwords were to be removed from the

Authentication relation); thus it is feasible to simply merge them, in order to eliminate the

use of the join operation. Interestingly enough, the TACACS+ server was designed to

keep the authentication and authorization information together in the context of the same

configuration file. Thus, the separate relations that I have created for the purposes of this

database design are in fact somewhat artificial. Furthermore, it seems that in order to

effectively handle an authentication request, the TACACS+ server must access not only

the authentication information, but also the authorization information as well. If these

two sets of information were in the same relation, it would speed up the most frequently

used query. Consquently, it seems like this might be a very beneficial design

modification. Unfortunately, this change could severely limit the scalability of the

database. Attribute growth is a very definite possibility that must be taken into

consideration. For example, Ameritech is moving towards the use of VPDNs3 for some of

their customers. In order to provide this functionality, many new attributes would be

needed in both the Authentication and Authorization relations. This is but one example of

the many possible modifications to the remote access services that would require the

addition of further attributes in either the Authentication or Authorization relations. Thus,

in terms of scalability, maintaining separate Authentication and Authorization tables

ECES433: Final Project December 3, 1998

Bringing an RDBMS to TACACS+ Page 33 of 74 Andy Reitz (reitz@ces.cwru.edu)

could be very beneficial to stable query performance. Under the “ unified” model, all

queries will suffer equally with the addition of each attribute. In the “ split” model, only

the queries that depend on the affected relation may suffer a performance decrease. Yet

again, I seemed to be faced with another major design decision, between the scalability of

the number of simultaneous authentication requests that a TACACS+ server can handle

(a vote for the unified model) and the performance of the data-analysis queries (a vote for

the split model). If this were to be implemented as a real project, I would recommend that

the unified model be used. But, for the purposes of this assignment, it is more interesting

to implement the split case, so my design will continue in this vein.

The final optimization that can be made is to eliminate nested queries whenever

possible. Nested queries require much more work on the part of the RDBMS, because it

must do the inner query first, and join the results of this query with the relations in the

outer query. Methods such as pipelining can be used by the RDBMS in order to speed

query processing to a degree, but no method can get around the fact that a join must be

performed. Thus, for the sake of performance, it makes sense to rewrite these sorts of

queries whenever possible, producing a non-nested equivalent. Consequently, two of the

previously stated queries, numbers three and four from Authentication, can be rewritten

in the following manner (and have been for my implementation):

3. SELECT A. user i d, A. name
FROM Aut hent i cat i on A
WHERE (A. t ype = ’ admi n’ AND A. l ogi n = ’ c l ear t ext t empass1’) OR
 (A. t ype = ’ admi n’ AND A. pap = ’ c l ear t ext t empass1’) OR
 (A. t ype = ’ admi n’ AND A. chap = ’ cl ear t ext t empass1’) OR
 (A. t ype = ’ admi n’ AND A. gl obal = ’ cl ear t ext t empass1’) ;

4. SELECT COUNT (*) AS num_user s
FROM Aut hent i cat i on;

SELECT COUNT (A2. user i d) AS act i ve_user s
FROM Aut hent i cat i on A2
WHERE A2. l ogi n <> ’ c l ear t ext t empass1’
 OR A2. pap <> ’ cl ear t ext t empass1’
 OR A2. chap <> ’ c l ear t ext t empass1’

ECES433: Final Project December 3, 1998

Bringing an RDBMS to TACACS+ Page 34 of 74 Andy Reitz (reitz@ces.cwru.edu)

 OR A2. gl obal <> ’ c l ear t ext t empass1’ ;

Moving on, the Accounting relation represents a special challenge, due to the

nature of the system-logging information that it stores. One very important performance-

affecting design decision has already been made – that of creating the Calls_Completed

table, in order to maintain the implied state information from the Raw_Accounting

records. Many of the most important queries that Ameritech (and their customers) desire

can be performed on the Calls_Completed table, saving the hassle of having to match up

the appropriate START, STOP, and UPDATE records every time. Beyond this decision,

however, further attention can be paid to both the Raw_Accounting and Calls_Completed

tables.

Of the many attributes contained in the Raw_Accounting relation, only the date,

task_id, and NAS-hostname attributes will ever be used as search keys. Furhtermore, this

relation is only used in three different queries (or transactions): one creates the

Calls_Completed table, the other two simply analyze the leftover records. Thus, under

these conditions, careful indexing can mitigate the relative difficulty of dealing with the

large size of the Raw_Accounting records. When generating the Calls_Completed

relation, only the task_id and NAS-hostname attributes are required as search keys. The

other queries will only need to search based upon the date and type attributes. Thus, two

different hash-based index structures could be created to cover each of these situations, in

order to create the highest-performing environment possible.

The queries and transactions that run on the Calls_Completed table are slightly

different in nature than those that have previously been examined. This relation doesn’t

contain any single attribute that can be treated as the key for the relation. Thus, several

attributes must be used together in order to determine unique tuples. These attributes

ECES433: Final Project December 3, 1998

Bringing an RDBMS to TACACS+ Page 35 of 74 Andy Reitz (reitz@ces.cwru.edu)

consist of the userid, NAS-hostname, date, and NAS-port. This means that every query

could potentially need to search based upon all of these attributes, plus whatever is

necessary in order to gain meaning from the query. Thus, in order to increase potential

query performance, it might make sense to reduce the complexity of this aggregate key.

One method to reduce the number of attributes in the aggregate key would be to

import the task_id attribute from the Raw_Accounting relation. The nature of the task_id

attribute is such that it is only required inorder to determine which combination of

START, STOP, and UPDATE records actually form a call. Thus, once all of the

components of the call have been located, the task_id is essentially irrelevant. My initial

design decision was to attempt to keep the size of the Calls_Completed relation down by

only including those attributes from Raw_Accounting that were absolutely necessary.

Thus, the task_id has been left out of the Calls_Completed relation. However, if it were

added, the aggregate key for the relation could be reduced to the combination of the NAS-

hostname and task_id attributes. Thus, another integer field per record could be sacrificed

in order to reduce the number of attributes required in the aggragate key by half.

Another method possible method would be to simply generate a unique integer for

every record that is added to the Calls_Completed table. The addition of a callid field

would add the same amount of data as the task_id attribute, but have the additional

advantage becoming the sole primary key of the relation. Thus, with only a little more

PL/SQL and memory space overhead, a radically less complex key can be generated for

the Calls_Completed relation. To me, this seems to make good design sense, so the

Calls_Completed relation will now be implemented as follows:

CREATE TABLE Cal l s_Compl et ed (cal l i d INTEGER,
user i d VARCHAR2(11),
NAS_host name VARCHAR2(11),
NAS_por t VARCHAR2(16),

ECES433: Final Project December 3, 1998

Bringing an RDBMS to TACACS+ Page 36 of 74 Andy Reitz (reitz@ces.cwru.edu)

st ar t _t i me DATE,
s t op_t i me DATE,
dur at i on INTEGER,
t ot _byt es_i n INTEGER,
t ot _byt es_out INTEGER,
t ot _paks_i n INTEGER,
t ot _paks_out INTEGER,
PRIMARY KEY (cal l i d)) ;

Other than the performance considerations that have been made, there aren’ t

many other aspects of the Accounting relations to analyze. None of these queries that

could possibly be implemented could use the join operation, thus no effort needs to be

expended optimizing for it. Thus, I am free to consider the implications that data growth

will have on these relations.

There is absolutely no doubt in my mind that this database design will have to

withstand quite a large amount of data. In fact, Ameritech currently has one customer that

has over 4,000 user accounts. Not only does this translate to large Authentication and

Authorization relations, but also to massive Accounting relations (the user activity in this

sort of scenario could be rather high). Furthermore, as Ameritech expands this service

(partly due to the ease at which an RDBMS solution allows them to add customers), the

amount of data that must be handled will grow in multiple ways. Not only will more user

accounts be necessary, but also the pace of Internet technology will assure the fact that

the number of attributes required in all of the relations will increase. Furthermore, as

Ameritech’s customer base increases, the number of access servers that they will employ

will increase. Thus, the system will be capable of handling more users simultaneously,

and the number of Accounting records that enter the system will grow exponentially

when compared to the number of users added. Fortunately, I feel that my design,

combined with a well-maintained Oracle Database4 will not only be able to handle the

ECES433: Final Project December 3, 1998

Bringing an RDBMS to TACACS+ Page 37 of 74 Andy Reitz (reitz@ces.cwru.edu)

challenge, but will also afford better scalability than the current solution as data needs

increase.

The current text-file based TACACS+ software implements a memory-based

hashing algorithm in order to search for Authentication records efficiently. When both the

size and number of the records is small, this algorithm will provide very efficient

performance – probably better than an RDBMS. However, as the data grows both in size

and in number, this algorithm will continue to require additional memory. It is at this

point, where the RDBMS will be able to take the performance lead. Since the database

software has been designed in order to efficiently handle large sets of data, it should be

able to outpace the rather simplistic hashing algorithm used in TACACS+.

Finally, beyond simple data growth, the possibility of changing requirements for

the database also needs to be discussed. It is quite possible that different queries will be

needed down the road, as customers ask for more statistics on their equipment, and as

Ameritech expands the service. However, the nature of these relations is such that these

new types of queries will be relatively bounded in what they can do. For example, there

won’t ever be any joins to deal with when concerning the Accounting information. Unless

some radical, fundamental shift in the database schema is made, all of the Accounting

queries will be contained to either the Calls_Completed or Raw_Accounting tables (or

sometimes both, but not in joined fashion). Thus, I feel that my current design is sound

enough to deal with the inevitable growth of the functionality that it will have to support.

bdc e�f�ghe�i�j�k
l�f�g
Beyond simple queries, the RDBMS needs to support many other functions in

order to handle every aspect of the TACACS+ environment. All of these functions can be

considered as transactions, either requiring either special SQL commands, or full-blown

ECES433: Final Project December 3, 1998

Bringing an RDBMS to TACACS+ Page 38 of 74 Andy Reitz (reitz@ces.cwru.edu)

programs in order to process. Unfortunately, problems encountered with the Oracle

database in the lab, as well as time constraints have limited what I have been able to

accomplish. Thus, I will divide my discussion of transactions into two categories: those

that could be implemented, and the one that I did implement. For those transactions that

were left unimplemented, some basic description will be provided, as well as a rough

examination of possible implementations. Finally, a detailed discussion will be given to

the transaction that was implemented.

m�n�o4p�qPr�o4s:t<u�o4s:v7r�w
1. The database needs to support the addition, deletion, and modification of users.

Currently, this is implemented through the aforementioned Administration Client.

The TACACS+ server has been extended to also accept administration packets from

this software program. Hence, the current implementation involves users connecting

to the TACACS+ server, and sending their modifications over. The TACACS+ server

then writes these changes to its local files, and reloads them into memory (if

necessar). Thus, the easiest thing to do would be to keep the same mechanism, but

modify the TACACS+ server to use the appropriate SQL commands in order to make

these modifications directly on the database. However, another possibility would be

to depreciate the use of the administration client in order to make use of some sort of

graphical front-end to the database itself. There are many ramifications to this

approach, but it would definitely be worth exploring in detail.

2. Another useful feature would be some sort of transaction that supports password

aging. In the current TACACS+ sever, this feature is left unimplemented.

Consequently, thanks to the ease with which the database can manipulate user-

records, we sould be able to easily add this functionalit. The most likely

ECES433: Final Project December 3, 1998

Bringing an RDBMS to TACACS+ Page 39 of 74 Andy Reitz (reitz@ces.cwru.edu)

implementation of this feature would be some sort of script that runs through the data

on a regular schedule. It would compare the last update time for each user record to a

certain threshold. If exceeded, it would remove the current password. Consequently,

the next time that the user attempted to login, they would be required to enter a new

password.

x�y�z4{�|7} ~:�<��z4~:|7���
3. For this relation, all that is necessary is a method in order to modify user records. This

would most likely be implemented alongside the corresponding Authentication

transaction.

���L�<�7�P���4�
�����
4. Another useful statistic is the number of calls per port (this could either be done over

a certain span of time, or as a running total). The underlying purpose is to look for

ports that are either underutilized (they could be broken), or over-utilized (could

require expansion of the NAS). This is currently implemented via a perl script that

parses the accounting information, matching START and STOP records, and

computing the necessary statistics. The information that it collects is exported as a

collection of comma-separated records, which are then imported into Microsoft Excel.

It is hoped that some of the vendor-supplied tools might afford a better method to

both accrue and display the data, so that it might be more possible to gain a higher

level of “ interactivity” with the data.

5. A tranasaction to determine the number of simultaneous calls handled by the NAS in

an hour. This transaction is important, because customers pay Ameritech per port, and

they need to see that they are getting their money’s worth. This could be implemented

via a script that loops through every hour in the Calls_Completed, tabulation ghte

ECES433: Final Project December 3, 1998

Bringing an RDBMS to TACACS+ Page 40 of 74 Andy Reitz (reitz@ces.cwru.edu)

number of calls that are “ open” for that hour. A call can be deemed “ open” if either

the starting time occurs within the given hour, or if the duration of the call moves into

the given hour. The final step in this process would again be the user presentation.

Currently, this is done by the aforementioned Excel-method, so it probably makes

sense to implement this transaction alongside the former transaction.

6. A transaction to tabulate a number of statistics on the user-level. Basically, it is

important to see things such as the number of calls per user and the total time that

said user has spent logged into the NAS, as well as the total amount of data that they

have sent/received. Collapsing all of this information into one place makes it easier to

keep tabs on what each user is doing with the system. An extension of this transaction

would be to maintain some sort of history, and “ flag” users that demonstrate

uncharacteristic behavior (this might indicate that a “ malicious” third party has

gained control of this particular user account).

7. Another useful transaction would be to generate a histogram of call durations. This

transaction would display the call durations based upon a set of predfined categories.

Each category would represent a different length of time, such as 0 – 1 hours, 1 – 2

hours, etc.

���P���P�����4�:�*�����P���P�P�
��� ���P��¡�¢��:���£��¤¦¥�§
As has been previously discussed, the notion of a Calls_Completed relation

simplifies greatly a number of problems that are encountered when dealing with the

Accounting data. Thus, in order to complete this assignment, it was necessary to

implement a transaction that generates the Calls_Completed table, based upon records

contained in the Raw_Accounting table. The specific implementation of this transaction

ECES433: Final Project December 3, 1998

Bringing an RDBMS to TACACS+ Page 41 of 74 Andy Reitz (reitz@ces.cwru.edu)

will follow in “ Appendix B” , and the current discussion will be limited to a discussion of

this implementation.

In general, this transaction did prove itself to be invaluable. As witnessed, the

implementation of many a query was greatly simplified by the presence of a

Calls_Completed table. Unfortunately, my implementation of this transaction did have

some problems. Basically, the nested loop structure of this script causes an undue amount

of computation on the RDBMS’ end. As such, when given roughly four thousand

Raw_Accounting records, this transaction required over half-an-hour to run to completion

in the lab. This level of performance is unacceptable, if this transaction is to be run agains

the Raw_Accounting table at regular intervals (as is expected – many of the queries

require as up-to-date information from the Calls_Completed relation as is feasible). Thus,

if this project were to be implemented in the “real world” , much effort would have to be

put into a design that performs better.

¨h©%ª�«�¬�©'¬��®,¯�®�°
±�
The discussion surrounding the implementation of my design will be broken up

across several appendicies, due to the lengthy nature of some the inputs and outputs.

Thus, this discussion will deal with the “ problems encountered” during the

implementation of my design.

The first problem that I encountered revolved around the sample data. It was

impossible for me to get “real world” data, so I implemented a perl script in order to

generate some faux data. A full discussion of this solution appears in Appendix A.

The second, and much more difficult hurdle, was the actual RDBMS that I used. I

wanted to use an Oracle database for this assignment, because Oracle currently has quite

a bit of support within Ameritech. Furhtermore, I also know that Oracle runs just great on

ECES433: Final Project December 3, 1998

Bringing an RDBMS to TACACS+ Page 42 of 74 Andy Reitz (reitz@ces.cwru.edu)

Sun Microsystem’s Solaris operating system. Solaris is the current operating platform for

Ameritech’s current TACACS+ servers, thus, any RDBMS solution that gets

implemented must fully support this environment.

That choice made, the only Oracle solution to which I had access was in the

Jennings Computer Lab, running on Microsoft Windows NT. Needless to say, after this

experience, I am not a firm believer in Oracle version 7.x for NT. To be fair, many of the

problems that I encountered were not the fault of Oracle or Microsoft. The Jennings lab

as of late 1998 is understaffed and under funded. Thus, the physical hardware backing up

the Oracle server wasn’t exactly the greatest. It wasn’t working when I wanted to start on

my implementation, so I had to find an administrator, and have him reboot the server a

number of times until it allowed me to login.

Once I was connected to the server, I was receiving transient “ Shared Memory

Allocation” errors when importing all of my data into the database. Unloading and

reloading the data several times seemed to clear up these problems.

The next set of problems that I encountered revolved around Oracle’s built-in

functions. In particular, I was interested in several functions that dealt with the DATE

datatype. Unfortunately, I was never able to decipher the documentation to the point that

I actually fully understood how to utilise these functions. Furhtermore, as I attempted to

explore these functions on my own (using the given examples asa guide), I was able to

confuse the RDBMS, to the point that no single query (no matter how simple) would run.

Basically, every command generated some form of internal error in the database. It was at

this point that the SQL*Plus front-end crashed, prompting me to re-login. Upon doing so,

everything appeared to be well, but I was still unable to use any of the built-in functions.

ECES433: Final Project December 3, 1998

Bringing an RDBMS to TACACS+ Page 43 of 74 Andy Reitz (reitz@ces.cwru.edu)

I ended up crashing SQL*Plus a few more times before I finally decided to give up on

these functions.

Nevertheless, all of the SQL that I used, as well as the output that it generated,

will be presented in a series of appendicies at the end of this report.

²´³�µ�¶�·¹¸�ºP»
³�µ
In order to conclude the discussion of this database design, some thought needs to

be given to its possible commercial-grade implementation. In order to implement this

database, Ameritech would have to carefully consider all of the costs involved, and weigh

them against the perceived value of the database implementation. The costs in moving to

the database model involve programmer time, as well as the purchase of additional

hardware and software. Once this solution has been implemented, it could add additional

day-to-day costs, in the form of an increased need to keep well-trained staff in order to

support this solution.

Furthermore, much of the increased functionality that the RDBMS offers isn’ t

very concrete, which makes this solution a “hard sell” . For example, the possibility of

increased reliability and scalability afforded by the Authentication and Authorization

relations won’t be visible until the current solution breaks. Thus, the data partitioning

features of the RDBMS (the fact that it can allow the data from multiple customers to be

stored on one machine) must be emphasized instead. But all told, less motivation exists

for using the RDBMS to store the authentication and authorization.

The RDBMS offeres much more tangible functionality when it comes to the

accounting information, however. There are many problems and unimplemented features

with the data reporting methodolgies that are currently in use. With the RDBMS,

however, many of these problems can be easily and efficiently solved.

ECES433: Final Project December 3, 1998

Bringing an RDBMS to TACACS+ Page 44 of 74 Andy Reitz (reitz@ces.cwru.edu)

Thus, it is my final recommendation that the accounting aspects of this design be

given a serious look. It would be a simpler task to start using a database for this data, and

if the RDBMS proved itself, then it would make more sense to apply it to the other two

areas as well.

ECES433: Final Project Appendicies December 3, 1998

Appendicies Page 45 of 74 Andy Reitz (reitz@ces.cwru.edu)

¼�½�½�¾�¿�ÀÂÁÄÃÅ¼ÇÆ�ÈÊÉ�Ë%½�Ì
¾ÎÍÏÉ�Ð,É
Unfortunately, I was not able to use “ live” customer data from Ameritech in the

database that I created for this project. Many of the attributes in the data set contain

highly sensitive values (such as passwords, userid’s, and phone numbers, to name a few),

and thus, it was clearly impossible for me to include this data in a silly report. So, I

created a fairly effective mechanism by which my own, faux data could be created.

Basically, I wrote an approximately 700-line perl script that produces all of the SQL

necessary in order to insert an arbitrary number of Authentication, Authorization, and

Accounting records into my database. I attempted to make my faux data adhere to the

actual data as much as possible, and although some of the intrinsic dependcies don’t

make sense, on a superficial level the data looks great.

It is too much to attempt to include all of the data that I generated in this

document. The Accounting information alone amounted to almost a megabyte of text.

Thus, I will simply include the perl script, and make the actual data available externally.

#! / usr / l ocal / bi n/ per l
##
Andy Rei t z r ei t z@ces. cwr u. edu
ECES 433 Fi nal Pr oj ect December 8, 1998
##
The pur pose of t hi s ’ gener at e_dat a’ scr i pt i s t o pr oduce a ver y r eal i s t i c
set of sampl e dat a f or my Dat abase Desi gn Pr oj ect . I n par t i cul ar , t hi s
pr ogr am wi l l out put t hr ee " . sql " f i l es, each one cont ai ni ng a number of
r ecor ds expr essed i n SQL92 f or mat . Whenever possi bl e, dat a has been
gener at ed t hat ’ makes sense’ , or at l east , appr oxi mat es r eal - wor l d dat a.
#
As an asi de, i t was har der t o devel op t hi s pr ogr am t hat I i ni t i al l y t hought
t hat i t woul d be - - t he t ot al pr ogr ammi ng t i me was about ni ne (9) hour s.
But , t hi s was one of t he mor e ’ f un’ aspect s of t hi s pr oj ect , so i t was
wel l wor t h t he ef f or t .
##
I nt er nal Scr i pt - conf i gur at i on el ement s.

use st r i ct ; # Keeps me honest .

##
Gl obal Conf i gur at i on Sect i on.
my ($NUM_DATA) = 500; # Number of r ecor ds t o gener at e.

Out put f i l enames.
my ($aut hen_f n) = " aut hent i cat i on_dat a. sql " ;

ECES433: Final Project Appendicies December 3, 1998

Appendicies Page 46 of 74 Andy Reitz (reitz@ces.cwru.edu)

my ($aut hor _f n) = " aut hor i zat i on_dat a. sql " ;
my ($acct _f n) = " account i ng_dat a. sql " ;

##
Gl obal Var i abl e Decl ar at i ons.
my ($count er) ;
my ($r out i ng, $r out e) ;
my ($user i d) ;
my ($passwd) ;
my ($user name) ;
my (@user i ds, @user names) ;
my ($i nacl , $out acl , $t i meout , $i dl et i me) ;

##
Begi n Mai n Pr ogr am.

We’ l l use t hi s seed t hr oughout t he pr ogr am.
sr and (t i me()) ;

#
The t wo ’ i f ’ s t at ement s t hat f ol l ow check t o see i f a f i l e exi st s, and i f i t
doesn’ t , t hey wi l l at t empt t o open t hem f or wr i t i ng.
#
i f (- e $aut hen_f n)

{
pr i nt " Er r or : t he Aut hent i cat i on out put f i l e, \ " $aut hen_f n\ " , al r eady

exi st s! \ n" ;
ex i t (3) ;
}

el se
{
i f (! open (AUTHEN, " > $aut hen_f n"))

{
pr i nt " Er r or : Coul dn’ t open t he Aut hent i cat i on out put f i l e,

\ " $aut hen_f n\ " , f or wr i t i ng. Reason: $! \ n" ;
ex i t (4) ;
}

}

i f (- e $aut hor _f n)
{
pr i nt " Er r or : t he Aut hor i zat i on out put f i l e, \ " $aut hor _f n\ " , al r eady

exi st s! \ n" ;
ex i t (5) ;
}

el se
{
i f (! open (AUTHOR, " > $aut hor _f n"))

{
pr i nt " Er r or : Coul dn’ t open t he Aut hor i zat i on out put f i l e,

\ " $aut hor _f n\ " , f or wr i t i ng. Reason: $! \ n" ;
ex i t (6) ;
}

}

#
Thi s j ui cy l i t t l e ’ f or ’ l oop gener at es bot h t he ’ Aut hent i cat i on’ and
’ Aut hor i zat i on’ dat af i l es. Basi cal l y , f or ever y t upl e t hat i s gener at ed i n
t he ’ Aut hent i cat i on’ f i l e, an co- i nc i di ng t upl e (usi ng t he same user i d)
i s gener at ed f or t he ’ Aut hor i zat i on’ dat af i l e. Al l of t he user i d’ s and
user name’ s ar e st or ed i nt o ar r ays, f or l at er use.
#
f or ($count er = 0; $count er < $NUM_DATA; $count er ++)

ECES433: Final Project Appendicies December 3, 1998

Appendicies Page 47 of 74 Andy Reitz (reitz@ces.cwru.edu)

{
pr i nt AUTHEN " I NSERT I NTO Aut hent i cat i on VALUES (" ;
$user i d = cr eat e_user i d() ;
$user i d . = $count er ;
push @user i ds, $user i d;
$user name = cr eat e_name() ;
push @user names, $user name;

pr i nt AUTHEN " ’ $user i d’ , $user name, " ;

$passwd = cr eat e_passwd() ;

pr i nt AUTHEN " $passwd, ’ t empl at e’ , $passwd, $passwd, " ;
pr i nt AUTHEN cr eat e_aut h_t ype() , " , " ;
pr i nt AUTHEN " $passwd) \ ; \ n" ;

pr i nt AUTHOR " I NSERT I NTO Aut hor i zat i on VALUES (" ;
pr i nt AUTHOR " ’ $user i d’ , " ;
($i nacl , $out acl , $t i meout , $i dl et i me) = cr eat e_aut hz_i nt s() ;
pr i nt AUTHOR " $i nacl , $out acl , $t i meout , $i dl et i me, " ;

pr i nt AUTHOR cr eat e_addr (0) , " , " ;

($r out i ng, $r out e) = cr eat e_r out i ng() ;
pr i nt AUTHOR " $r out i ng, $r out e) ; \ n" ;
}

c l ose (AUTHEN) ;
c l ose (AUTHOR) ;

#
Spi t - out t he account i ng i nf or mat i on.
#
cr eat e_account i ng (\ @user i ds, \ @user names, $acct _f n) ;

End of Mai n Pr ogr am.
##

##
Begi n Subr out i nes.

#
Thi s subr out i ne r et ur ns a pr et t y f unky user i d. I t ’ s basi cal l y 6 r andom
l ower - case l et t er s t hr own t oget her . Gener at i ng meani ngf ul user i d’ s (based
of f of t he name) , woul d have been much mor e di f f i cul t . We’ l l append a uni que
number t o each, i n or der t o keep t hem uni que. So, i n essence, t hese l et t er s
ar e j ust f or ef f ect .
#
sub cr eat e_user i d {

my (@char _ar y) = (’ a’ . . ’ z’) ;
my ($count er) ;
my ($r et _user i d) ;

f or ($count er = 0; $count er < 5; $count er ++)
{
$r et _user i d . = $char _ar y[r and($#char _ar y) + 1] ;
}

r et ur n ($r et _user i d) ;

} # End cr eat e_user i d() .

ECES433: Final Project Appendicies December 3, 1998

Appendicies Page 48 of 74 Andy Reitz (reitz@ces.cwru.edu)

#
Thi s r out i ne r et ur ns a an 8- char act er - l ong passwor d, composed of pr et t y
r andom char act er s 60% of t he t i me. The ot her 40% of t he t i me, i t j ust
r et ur ns t he def aul t " t empass1" passwor d.
#
sub cr eat e_passwd {

my (@char _ar y) = (’ A’ . . ’ Z’ , ’ a’ . . ’ z’ , ’ 1’ . . ’ 9’ , ’ ! ’ , ’ _’) ;
my ($count er) ;
my ($r et _passwd) = " ’ c l ear t ext " ;

i f (r and > 0. 3)
{
f or ($count er = 0; $count er < 8; $count er ++)

{
$r et _passwd . = $char _ar y[r and($#char _ar y) + 1] ;
}

$r et _passwd . = ’ \ ’ ’ ;
}

el se
{
$r et _passwd . = " t empass1’ " ;
}

r et ur n ($r et _passwd) ;

} # End cr eat e_passwd() .

#
Thi s subr out i ne cr eat es a r andom per son- name. I t r equi r es t he use of t wo
i nput f i l es, " f i r s t . dat " (cont ai ni ng a l i s t of f i r st names) , and
" l ast . dat " (cont ai ni ng a l i s t of l ast names) . I t wi l l pi ck a r andom wor d
f r om each f i l e, as wel l as a r andom mi ddl e i ni t i al (onl y 20% of t he t i me) ,
and r et ur n al l of t he dat a i n t he " Last _Name, Fi r s t _Name Mi ddl e_I ni t i al "
f or mat .
#
sub cr eat e_name {

my (@f n, @l n) ;
my (@i ni t i al s) = (’ A’ . . ’ Z’) ;
my ($mi) ;
my ($r et _l n, $r et _f n) ;

i f (! open (FI RST, " f i r st . dat "))
{
pr i nt " Er r or : Coul dn’ t open i nput f i l e \ " f i r s t . dat \ " . Reason

$! \ n" ;
ex i t (1) ;
}

i f (! open (LAST, " l ast . dat "))
{
pr i nt " Er r or : Coul dn’ t open i nput f i l e \ " l ast . dat \ " . Reason $! \ n" ;
ex i t (2) ;
}

@f n = <FI RST>;
@l n = <LAST>;

i f (r and > 0. 6)
{
$mi = $i ni t i al s[r and ($#i ni t i al s) + 1] ;
}

ECES433: Final Project Appendicies December 3, 1998

Appendicies Page 49 of 74 Andy Reitz (reitz@ces.cwru.edu)

$r et _l n = $l n[r and ($#l n) + 1] ;
chop ($r et _l n) ;

$r et _f n = $f n[r and ($#f n) + 1] ;
chop ($r et _f n) ;

r et ur n (" ’ $r et _l n, $r et _f n $mi ’ ") ;

} # End cr eat e_name() .

#
Thi s subr out i ne r et ur ns t he st r i ng " admi n" 10% of t he t i me.
#
sub cr eat e_aut h_t ype {

i f (r and > 0. 9)
{
r et ur n (" ’ admi n’ ") ;
}

el se
{
r et ur n (" NULL") ;
}

} # End cr eat e_aut h_t ype() .

#
Thi s subr out i ne cr eat es a r andom I P addr ess, 20% of t he t i me.
#
sub cr eat e_addr {

my ($dor and) = shi f t (@_) ;

my ($oct 1, $oct 2, $oct 3, $oct 4) ;

i f ($dor and | | (r and > 0. 8))
{
$oct 1 = i nt (r and (255)) ;
$oct 2 = i nt (r and (255)) ;
$oct 3 = i nt (r and (255)) ;
$oct 4 = i nt (r and (255)) ;
}

i f (def i ned ($oct 1))
{
r et ur n (" ’ $oct 1. $oct 2. $oct 3. $oct 4’ ") ;
}

el se
{
r et ur n (" NULL") ;
}

} # End cr eat e_addr () .

#
Thi s subr out i ne r et ur ns t wo val ues - - t he ’ r out i ng’ at t r i but e, f ol l owed
by t he ’ r out e’ at t r i but e. I f we deci de t hat ’ r out i ng’ shoul d be FALSE (as
i t wi l l be 60% of t he t i me) , t hen we’ l l j ust r et ur n ’ NULL’ f or t he ’ r out e’
at t r i but e. Ot her wi se, we’ l l act ual l y gener at e a r andom r out e st at ement .
#
sub cr eat e_r out i ng {

ECES433: Final Project Appendicies December 3, 1998

Appendicies Page 50 of 74 Andy Reitz (reitz@ces.cwru.edu)

my ($o1, $o2, $o3, $o4) ;

i f (r and > 0. 4)
{
r et ur n (" ’ FALSE’ " , " NULL") ;
}

el se
{
#
Cr eat i ng a val i d r out e i s ver y di f f i cul t , and si nce t he
poi nt of t hi s i s j ust t o get some dat a f l owi n’ , I ’ m not
goi ng t o t r y ver y har d. The TACACS+ spec says t hat i t
expect s ’ r out e’ at t r i but es i n t he f or m of :
#
<dst _addr ess> <mask> <r out i ng_addr >
#
So, i n or der t o make t hi ngs easi er , I ’ m goi ng t o assume t hat
ever yt hi ng i s ’ c l ass C’ masked.
#
$o1 = i nt (r and (255)) ;
$o2 = i nt (r and (255)) ;
$o3 = i nt (r and (255)) ;
$o4 = i nt (r and (255)) ;

r et ur n (" ’ TRUE’ " , " ’ $o1. $o2. $o3. 0 255. 255. 255. 0
$o1. $o2. $o3. $o4’ ") ;

}

} # End cr eat e_r out i ng() .

#
Thi s subr out i ne cr eat es t he f our i nt eger s necessar y f or an Aut hor i zat i on
r ecor d.
#
sub cr eat e_aut hz_i nt s {

my ($i nacl , $out acl , $t i meout , $i dl et i me) ;

#
Choose t he access l i st val ues.
#
i f (r and > 0. 6)

{
$i nacl = i nt (r and (456)) ;
$out acl = i nt (r and (456)) ;
}

el se
{
$i nacl = " NULL" ;
$out acl = " NULL" ;
}

#
Choose t he t i meout par amet er . We’ l l al l ow i t t o r ange f r om zer o t o
1200 mi nut es (20 hour s) .
#
i f (r and > 0. 8)

{
$t i meout = 60 * i nt (r and (1200)) ;
}

el se
{
$t i meout = " NULL" ;

ECES433: Final Project Appendicies December 3, 1998

Appendicies Page 51 of 74 Andy Reitz (reitz@ces.cwru.edu)

}

#
Now, choose t he i dl e t i meout .
#
i f (r and > 0. 7)

{
$i dl et i me = 60 * i nt (r and (10)) ;
}

el se
{
$i dl et i me = " NULL" ;
}

r et ur n ($i nacl , $out acl , $t i meout , $i dl et i me) ;

} # End cr eat e_aut hz_i nt s() .

#
Ohboy, what f un her e. Thi s f unct i on at t empt s t o gener at e a whol e mess of
’ Raw_Account i ng’ r ecor ds. Wher eas t he pr evi ous t wo r el at i ons had a one- t o- one
r el at i onshi p, t hi s doesn’ t hol d f or Account i ng (t hi nk about i t - - peopl e l i ke
t o l ogi n mor e t han once!) . So, t hi s f unct i on handl es al l of t hat , i n t he
manner
t hat I best saw f i t . Not e t hat t he dependenci es bet ween t he Account i ng
r ecor ds
and t he ot her t wo r el at i ons ar en’ t ver y accur at e - - wi t h t he except i on of t he
user i ds/ names, ever yt hi ng el se i s r andoml y i ndependent . Real i s t i cal l y, t he
onl y
way t o have got t en bet t er dat a woul d have been t o set up a sampl e TACACS+
ser ver ,
and gener at e i t t hat way.
#
sub cr eat e_account i ng {

#
Gat her t he par amet er s f r om t he par ent . Not e, I ’ m usi ng var i abl e
r ef er enci ng her e i n or der t o pass t wo ar r ays. Wi er d.
#
my ($user i ds) = shi f t (@_) ;
my ($user names) = shi f t (@_) ;
my ($acct _f n) = shi f t (@_) ;

my ($user i d) ; # The cur r ent user i d.
my ($user _cnt) = 0; # Count er ; St eps t hr ough user i d ar r ay.
my ($host) ; # The cur r ent NAS- host name.
my (@t ask_i d) = (0, 0) ; # Ar r ay of t ask_i d’ s , one- per - NAS.
my ($t ype) ; # START, STOP, or BOTH?

Do t hat f unky f i l e s t uf f agai n.
i f (- e $acct _f n)

{
pr i nt " Er r or : t he Account i ng out put f i l e, \ " $acct _f n\ " , al r eady

exi st s! \ n" ;
ex i t (7) ;
}

el se
{
i f (! open (ACCT, " > $acct _f n"))

{
pr i nt " Er r or : Coul dn’ t open t he Account i ng out put f i l e,

\ " $acct _f n\ " , f or wr i t i ng. Reason: $! \ n" ;
ex i t (8) ;

ECES433: Final Project Appendicies December 3, 1998

Appendicies Page 52 of 74 Andy Reitz (reitz@ces.cwru.edu)

}
}

#
We st ar t of f by gener at i ng t he ’ good’ dat a - - i . e. val i d START/ STOP
pai r s.
#
For ever y user i d, we have t o gener at e a number of uni que (?)
account i ng el ement s:
NAS- host name - We’ l l assume t hat each per son st i cks t o one NAS.
r emot e_phone_number - Assume t hat t hey cal l f r om one l ocat i on.
#
f or each $user i d (@$user i ds)

{
i f (r and > 0. 5)

{
$host = " I L_as2516" ;
$t ask_i d[0] = emi t _acct _r ec (@$user i ds[$user _cnt] ,

@$user names[$user _cnt] , ’ BOTH’ , $t ask_i d[0] , $host) ;
}

el se
{
$host = " OH_as5200" ;
$t ask_i d[1] = emi t _acct _r ec (@$user i ds[$user _cnt] ,

@$user names[$user _cnt] , ’ BOTH’ , $t ask_i d[1] , $host) ;
}

$user _cnt ++;
} # f or each

Now, gener at e some bogus START/ STOP r ecor ds.
f or ($user _cnt = 0; $user _cnt < ($NUM_DATA * 0. 1) ; $user _cnt ++)

{
What t ype shal l we make?
i f (r and > 0. 5)

{
$t ype = ’ START’ ;
}

el se
{
$t ype = ’ STOP’ ;
}

Make i t so!
i f (r and > 0. 5)

{
$host = " I L_as2516" ;
$t ask_i d[0] = emi t _acct _r ec (@$user i ds[$user _cnt] ,

@$user names[$user _cnt] , $t ype, $t ask_i d[0] , $host) ;
}

el se
{
$host = " OH_as5200" ;
$t ask_i d[1] = emi t _acct _r ec (@$user i ds[$user _cnt] ,

@$user names[$user _cnt] , $t ype, $t ask_i d[1] , $host) ;
}

} # f or

c l ose (ACCT) ;

} # End cr eat e_account i ng() .

#

ECES433: Final Project Appendicies December 3, 1998

Appendicies Page 53 of 74 Andy Reitz (reitz@ces.cwru.edu)

Thi s f unct i on at t mept s t o emi t a var i abl e number of START/ STOP r ecor ds,
based upon i t ’ s gi ven par amet er s. I t ’ s al l qui t e a hack, r eal l y (but
t hen agai n, so i s / per l / , i f you t hi nk about i t) .
#
sub emi t _acct _r ec {

St ar t of f by get t i ng al l of our par amet er s.
my ($cur _user i d) = shi f t (@_) ;
my ($cur _user name) = shi f t (@_) ;
my ($passed_t ype) = shi f t (@_) ;
my ($t ask_i d) = shi f t (@_) ;
my ($cur _host) = shi f t (@_) ;

my ($cur _ph) ; # Phone Number .
my ($cur _por t) ; # NAS- por t .
my ($cur _t ype) ; # START/ STOP/ et c.
my ($st ar t _t i me, $st op_t i me) ; # St ar t i ng and St oppi ng t i mes.
my ($num_r un) ; # Count er ; number of out put s t o do.
my ($r un_count) = 0; # Count er ; cur r ent out put bei ng made.

Bul k var i abl es f or STOP r ecor d.
my ($pr e_byt es_i n, $pr e_byt es_out , $pr e_paks_i n, $pr e_paks_out) ;
my ($byt es_i n, $byt es_out , $paks_i n, $paks_out) ;
my ($pr e_sessi on_t i me, $el apsed_t i me) ;

#
Thi s whol e not i on of START/ STOP/ BOTH i s pr et t y hacki sh, but i t
wor ks (and you can’ t ar gue wi t h t hat) .
#
i f ($passed_t ype eq " BOTH")

{
Okay, we’ r e doi ng t he ’ r eal t hi ng’ . Gener at e a r andom
number of START/ STOP pai r s.
$cur _t ype = ’ START’ ;
$num_r un = i nt (r and (10)) ;
i f ($num_r un == 0)

{
$num_r un = 1;
}

}
el se

{
Faux- r ecor d, onl y do i t once.
$cur _t ype = $passed_t ype;
$num_r un = 1;
}

Get our guy’ s phone number .
$cur _ph = gen_phone_number ($cur _host) ;

#
Thi s i s a pr et t y f un l oop. I t gener at es al l of t he dat a t hat i s uni que
per START/ STOP pai r , and t hen emi t s t he pai r . I t of cour se wi l l onl y
emi t one r ecor d i f i t wasn’ t gi ven ’ bot h’ t o st ar t wi t h.
#
f or ($r un_count = 0; $r un_count < $num_r un; $r un_count ++)

{
#
Now, we have t o gener at e START/ STOP pai r s. Uni que
t o each pai r wi l l be:
The st ar t / st op t i mes (duh)
NAS- por t - we’ l l assume i t di f f er s
t ask_i d - count er ; uni que t o a NAS.

ECES433: Final Project Appendicies December 3, 1998

Appendicies Page 54 of 74 Andy Reitz (reitz@ces.cwru.edu)

#
($st ar t _t i me, $st op_t i me) = gen_dat es() ;

$cur _por t = gen_por t ($cur _host) ;

Emi t a begi nni ng - - coul d be al l i f we’ r e ’ START’ .
pr i nt ACCT " I NSERT I NTO Raw_Account i ng VALUES (" ;
pr i nt ACCT " ’ $st ar t _t i me’ , ’ $cur _host ’ , ’ $cur _user i d’ ,

’ $cur _por t ’ , $cur _ph, ’ $cur _t ype’ , $cur _user name, " ;
pr i nt ACCT " $t ask_i d, ’ UTC’ , ’ PPP’ " ;

i f ($passed_t ype eq " BOTH")
{
$cur _t ype = ’ STOP’ ;
f i ni sh of f START, st ar t agai n.
pr i nt ACCT " , NULL, NULL, NULL, NULL, NULL, NULL, NULL,

NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL) \ ; \ n" ;
pr i nt ACCT " I NSERT I NTO Raw_Account i ng VALUES (" ;
pr i nt ACCT " ’ $st op_t i me’ , ’ $cur _host ’ , ’ $cur _user i d’ ,

’ $cur _por t ’ , $cur _ph, ’ $cur _t ype’ , $cur _user name, " ;
pr i nt ACCT " $t ask_i d, ’ UTC’ , ’ PPP’ " ;
}

#
Gener at e t he ’ STOP’ por t i on of t he r ecor d, i f necessar y.
#
i f ($cur _t ype eq " STOP")

{
I t ’ s t r ue, we’ l l al ways get an addr .
pr i nt ACCT " , ’ I P’ , " , cr eat e_addr (1) , " , " ;

Di sconnect i on wi l l al ways be same.
pr i nt ACCT " 1, 1045, " ;

I r eal l y hat e al l of t he st upi d count er s.
$pr e_byt es_i n = i nt (r and (200)) ;
$pr e_byt es_out = i nt (r and (200)) ;
$pr e_paks_i n = i nt (r and (12)) ;
$pr e_paks_out = i nt (r and (12)) ;

$byt es_i n = i nt (r and (1000000000)) ;
$byt es_out = i nt (r and (1000000000)) ;
$paks_i n = i nt ($byt es_i n / 1500) + i nt (r and (230)) ;
$paks_out = i nt ($byt es_out / 1500) + i nt (r and (230)) ;

$pr e_sessi on_t i me = i nt (r and (20)) ;
$el apsed_t i me = i nt (r and (72000)) ;

pr i nt ACCT " $pr e_byt es_i n, $pr e_byt es_out , $pr e_paks_i n,
$pr e_paks_out , " ;

pr i nt ACCT " $byt es_i n, $byt es_out , $paks_i n, $paks_out , " ;
pr i nt ACCT " $pr e_sessi on_t i me, $el apsed_t i me, " ;
pr i nt ACCT " 56000) \ ; \ n" ;
$cur _t ype = ’ START’ ;
}

el se
{
Wr ap- up t he dangl i ng START.
pr i nt ACCT " , NULL, NULL, NULL, NULL, NULL, NULL, NULL,

NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL) \ ; \ n" ;
}

We’ l l need t hi s t o be di f f er ent next t i me ’ r ound.

ECES433: Final Project Appendicies December 3, 1998

Appendicies Page 55 of 74 Andy Reitz (reitz@ces.cwru.edu)

$t ask_i d++;
} # f or

Send our updat ed $t ask_i d back t o momma.
r et ur n ($t ask_i d) ;

} # End emi t _acct _r ec() .

#
Thi s subr out i ne comput es t hat st ar t i ng t i me and st oppi ng t i me f or a cal l ,
and r et ur ns sai d val ues. Al l r ecor ds wi l l s t ar t on t he same day, but
at di f f er ent t i mes. Fr om t her e, t hey can end at maxi mum 20 hour s l at er .
#
I t ook a qui ck spi n of t he Or acl e 7 On- Li ne document at i on, and i t seems t hat
t he f or mat f or t hei r ’ dat e’ dat at ype i s somet hi ng l i ke t hi s:
#
DD- MON- YYYY 12: 00: 00a. m.
#
Now, I don’ t / exact l y/ suppor t t hat f or mat . I t hi nk t hat t he not i on of
’ a. m. ’ / ’ p. m’ i s onl y f or humans, not comput er s. So, I ’ l l see i f Or acl e wi l l
t ake t i me i n t he 24- hour f or mat . I f i t doesn’ t , I ’ l l be back t o edi t t hi s
code.
#
And I ’ d j ust l i ke t o say t hat t hi s bi t of code doesn’ t r epr esent t he
amount of t i me t hat i t t ook t o cr af t t hi s f unct i on. I coded i t about
t wo ot her ways f i r st , t hat j ust di dn’ t pan out . Thi s i s ni ce and t i ght ,
t hough, and I t hi nk I ’ l l be abl e t o use t hi s agai n. . .
#
sub gen_dat es {

my ($now, $l at er) ;
my (@r n, @r l) ;
my ($st ar t , $st op) ;
my (@mont hs) = (’ Jan’ , ’ Feb’ , ’ Mar ’ , ’ Apr ’ , ’ May’ , ’ Jun’ , ’ Jul ’ , ’ Aug’ ,

’ Sep’ , ’ Oct ’ , ’ Nov’ , ’ Dec’) ;

#
Now i s r eal l y l at er (by no mor e t han 10 hour s) . Somet i mes, t hi s code
pr oduces t i mes t hat ar e act ual l y ’ ahead’ of t he cur r ent t i me.
#
I have no i dea why t hi s happens.
#
$now = t i me() ;
$now - = i nt (r and (36000)) ;

72000 = 60sec * 60mi n * 20hr
$l at er = $now + i nt (r and (72000)) ;

#
gmt i me() conver t s- out t he t i me i nt o a whol e LI ST of val ues. I n
par t i cul ar , t hese ar e of i mpor t ance:
0 - seconds
1 - mi nut es
2 - hour
3 - day of t he mont h
4 - mont h number (st ar t s @ zer o)
5 - year number (# year s f r om 1900)
#
@r n = gmt i me ($now) ;

Pad- out anyt hi ng t hat needs i t (gr r . . .)
i f ($r n[3] < 10)

{

ECES433: Final Project Appendicies December 3, 1998

Appendicies Page 56 of 74 Andy Reitz (reitz@ces.cwru.edu)

$r n[3] = " 0$r n[3] " ;
}

i f ($r n[2] < 10)
{
$r n[2] = " 0$r n[2] " ;
}

i f ($r n[1] < 10)
{
$r n[1] = " 0$r n[1] " ;
}

i f ($r n[0] < 10)
{
$r n[0] = " 0$r n[0] " ;
}

$r n[5] += 1900;
$st ar t = " $r n[3] - $mont hs[$r n[4]] - $r n[5] $r n[2] : $r n[1] : $r n[0] " ;

@r l = gmt i me ($l at er) ;

i f ($r l [3] < 10)
{
$r l [3] = " 0$r l [3] " ;
}

i f ($r l [2] < 10)
{
$r l [2] = " 0$r l [2] " ;
}

i f ($r l [1] < 10)
{
$r l [1] = " 0$r l [1] " ;
}

i f ($r l [0] < 10)
{
$r l [0] = " 0$r l [0] " ;
}

$r l [5] += 1900;
$st op = " $r l [3] - $mont hs[$r l [4]] - $r l [5] $r l [2] : $r l [1] : $r l [0] " ;

r et ur n ($st ar t , $st op) ;

} # End gen_dat es() .

#
Gener at es a 10 di gi t phone number , ar ea- code f i r st . I t hi nk t hat i t ’ s pr et t y
spi f f y t hat t he ar ea codes act ual l y ’ make sense’ .
#
sub gen_phone_number {

my ($host name) = shi f t (@_) ;
my (@ar ea_codes) ;
my ($r et _num) ;
my ($count er) ;

i f ($host name =~ / OH/)
{

ECES433: Final Project Appendicies December 3, 1998

Appendicies Page 57 of 74 Andy Reitz (reitz@ces.cwru.edu)

@ar ea_codes = (440, 216, 330) ;
}

el se
{
@ar ea_codes = (630, 708, 312, 847, 713) ;
}

$r et _num = ’ \ ’ ’ ;
$r et _num . = $ar ea_codes[i nt (r and ($#ar ea_codes))] ;

f or ($count er = 0; $count er < 7; $count er ++)
{
$r et _num . = i nt (r and (10)) ;
}

$r et _num . = ’ \ ’ ’ ;

r et ur n ($r et _num) ;

} # End gen_phone_number () .

#
Thi s subr out i ne r et ur ns a por t name, based upon t he NAS- host name i t i s gi ven.
I t appends a r andom number t o each por t , t he s i ze of whi ch i s based upon
my not i on of each NAS’ s por t capaci t y.
#
sub gen_por t {

my ($host name) = shi f t (@_) ;
my ($r et _por t) ;

i f ($host name =~ / 2516/)
{
These t hi ngs max out at 32 por t s.
$r et _por t = " 2516_Async_" ;
$r et _por t . = i nt (r and (32)) ;
}

el se
{
These t hi ngs max out at 256 por t s.
$r et _por t = " 5200_Async_" ;
$r et _por t . = i nt (r and (256)) ;
}

r et ur n ($r et _por t) ;
} # End gen_por t () .

Ñ�Ò�Ò�Ó�Ô�ÕÂÖÄ×ÙØÛÚaÜ�Ý�Ó�Ô�Ó�Þ ß�à,Ó*áãâaß�ä¹äæåçá�â�èdé%Ò�ä
Ó7àLÓ�Õëêæåhìëäîí
/ * /
/ * ECES 433, Fi nal Desi gn Pr oj ect * /
/ * ’ gener at e_cal l s_compl et ed. sql ’ - I mpl ement s t he PL/ SQL f unct i onal i t y * /
/ * necessar y i n or der t o conver t s t at el ess ’ Raw_Account i ng’ * /
/ * r ecor ds i nt o t he st at ef ul ’ Cal l ’ t ype r ecor ds. * /
/ * by Andy Rei t z (r ei t z@ces. cwr u. edu) * /
/ * Dat e: 12/ 10/ 98 * /
/ * /

/ * To st ar t of f , t he out put t abl e must be cr eat ed. * /
CREATE TABLE Cal l s_Compl et ed (

cal l i d I NTEGER,
user i d VARCHAR2(11) ,
NAS_host name VARCHAR2(11) ,

ECES433: Final Project Appendicies December 3, 1998

Appendicies Page 58 of 74 Andy Reitz (reitz@ces.cwru.edu)

NAS_por t VARCHAR2(16) ,
st ar t _t i me DATE,
st op_t i me DATE,
dur at i on I NTEGER,
t ot _byt es_i n I NTEGER,
t ot _byt es_out I NTEGER,
t ot _paks_i n I NTEGER,
t ot _paks_out I NTEGER,
PRI MARY KEY (cal l i d)) ;

DECLARE
/ * Thi s cur sor poi nt s t o al l of t he START- r ows. * /
CURSOR st ar t _cur I S

SELECT *
FROM Raw_Account i ng
WHERE t ype = ’ START’ ;

/ * Thi s cur sor poi nt s t o al l of t he STOP- r ows. * /
CURSOR st op_cur I S

SELECT *
FROM Raw_Account i ng
WHERE t ype = ’ STOP’ ;

cal l i d I NTEGER : = 0; / * The cur r ent cal l f ound. * /
dur at i on I NTEGER; / * The l engt h of sai d cal l . * /
t ot _byt es_i n I NTEGER; / * Aggr egat ed byt es i nput . * /
t ot _byt es_out I NTEGER; / * Aggr egat ed byt es out put . * /
t ot _paks_i n I NTEGER; / * Aggr egat ed packet s i nput . * /
t ot _paks_out I NTEGER; / * Aggr egat ed packet s out put . * /

BEGI N
/ *
 * Thi s f unct i on i s i mpl ement ed as t wo nest ed l oops. The out er l oop
 * s t eps t hr ough ever y START r ecor d. For each such r ecor d, we l ook
 * t hr ough al l of t he STOP r ecor ds f or t he one t hat has t he same
 * NAS_host name and t ask_i d. Once f ound, t hi s dat a i s i nser t ed as a
 * new r ecor d i n t he ’ Cal l s_Compl et ed’ t abl e, and t he or i gi nal t upl es
 * ar e del et ed f r om ’ Raw_Account i ng’ .
 * /
FOR st ar t _r ec I N st ar t _cur LOOP

FOR st op_r ec I N st op_cur LOOP
I F (st ar t _r ec. t ask_i d = st op_r ec. t ask_i d) AND

(st ar t _r ec. NAS_host name = st op_r ec. NAS_host name) THEN
/ * Comput e dur at i on * /
dur at i on : = st op_r ec. l og_dat e - st ar t _r ec. l og_dat e;

/ * Comput e t ot al s * /
t ot _byt es_i n : = st op_r ec. pr e_byt es_i n +

st op_r ec. byt es_i n;
t ot _byt es_out : = st op_r ec. pr e_byt es_out +

st op_r ec. byt es_out ;
t ot _paks_i n : = st op_r ec. pr e_paks_i n +

st op_r ec. paks_i n;
t ot _paks_out : = st op_r ec. pr e_paks_out +

st op_r ec. paks_out ;

/ * I nser t t hi s cal l . * /
I NSERT I NTO Cal l s_Compl et ed VALUES (cal l i d,

s t ar t _r ec. user i d, st ar t _r ec. NAS_host name,
st ar t _r ec. NAS_por t , st ar t _r ec. l og_dat e,
st op_r ec. l og_dat e, dur at i on, t ot _byt es_i n,
t ot _byt es_out , t ot _paks_i n, t ot _paks_out) ;

ECES433: Final Project Appendicies December 3, 1998

Appendicies Page 59 of 74 Andy Reitz (reitz@ces.cwru.edu)

/ * I ncr ement cal l i d number * /
cal l i d : = cal l i d + 1;

/ * Del et e t he st op_r ec * /
DELETE
FROM Raw_Account i ng
WHERE t ask_i d = st op_r ec. t ask_i d

AND NAS_host name = st op_r ec. NAS_host name;

/ * Del et e t he st ar t _r ec * /
DELETE
FROM Raw_Account i ng
WHERE t ask_i d = st ar t _r ec. t ask_i d

AND NAS_host name = st ar t _r ec. NAS_host name;

END I F;
END LOOP;

END LOOP;
END;

ï�ð�ð�ñ�ò�óÂôÄõ'öø÷�ù�óëú*ûÏô¹ò�ôýü�þæÿ������
/ * /
/ * ECES 433, Fi nal Desi gn Pr oj ect * /
/ * ’ db_i ni t . sql ’ - Conf i gur es t he Or acl e 7 envi r onment and cr eat es t he * /
/ * t he t hr ee mai n r el at i ons. * /
/ * by Andy Rei t z (r ei t z@ces. cwr u. edu) * /
/ * Dat e: 12/ 10/ 98 * /
/ * /

/ * Set up t he envi r onment . * /
set l i nesi ze 500
set pagesi ze 1000
set wr ap of f

/ * Thi s makes t he dat es i n t he ’ Account i ng’ r el at i on wor k bet t er . * /
ALTER SESSI ON SET NLS_DATE_FORMAT = ’ DD- MON- YYYY HH24: MI : SS’ ;

/ * Cl ean- up any exi st i ng t abl es. * /
dr op t abl e cal l s_compl et ed;
dr op t abl e r aw_account i ng;
dr op t abl e aut hor i zat i on;
dr op t abl e aut hent i cat i on;

/ * Cr eat e t he ’ Aut hent i cat i on’ t abl e. * /
CREATE TABLE Aut hent i cat i on (

user i d VARCHAR2(11) ,
name VARCHAR2(40) ,
l ogi n VARCHAR2(18) ,
member VARCHAR2(10) ,
chap VARCHAR2(18) ,
pap VARCHAR2(18) ,
t ype VARCHAR2(5) ,
gl obal VARCHAR2(18) ,
PRI MARY KEY (user i d)) ;

/ * Cr eat e t he ’ Aut hor i zat i on’ t abl e. * /
CREATE TABLE Aut hor i zat i on (

user i d VARCHAR2(11) ,
i nacl I NTEGER,
out acl I NTEGER,

ECES433: Final Project Appendicies December 3, 1998

Appendicies Page 60 of 74 Andy Reitz (reitz@ces.cwru.edu)

t i meout I NTEGER,
i dl et i me I NTEGER,
addr VARCHAR2(15) ,
r out i ng VARCHAR2(5) ,
r out e VARCHAR2(49) ,
FOREI GN KEY (user i d) REFERENCES Aut hent i cat i on ON DELETE CASCADE) ;

/ * Cr eat e t he ’ Account i ng’ t abl e. * /
CREATE TABLE Raw_Account i ng (

l og_dat e DATE,
NAS_host name VARCHAR2(11) ,
user i d VARCHAR2(11) ,
NAS_por t VARCHAR2(16) ,
r emot e_phone_number CHAR(10) ,
t ype VARCHAR2(6) ,
NasUser Name VARCHAR2(40) ,
t ask_i d I NTEGER,
t i mezone VARCHAR2(3) ,
ser v i ce VARCHAR2(3) ,
pr ot ocol VARCHAR2(3) ,
addr VARCHAR2(15) ,
di sc_cause I NTEGER,
di sc_cause_ext I NTEGER,
pr e_byt es_i n I NTEGER,
pr e_byt es_out I NTEGER,
pr e_paks_i n I NTEGER,
pr e_paks_out I NTEGER,
byt es_i n I NTEGER,
byt es_out I NTEGER,
paks_i n I NTEGER,
paks_out I NTEGER,
pr e_sessi on_t i me I NTEGER,
el apsed_t i me I NTEGER,
dat a_r at e I NTEGER) ;

���	��
������������������� ��
��!� �#"���$%�'&(�!)�*��+
�,.-#
�/102/�*�3�4
/ * /
/ * ECES 433, Fi nal Desi gn Pr oj ect * /
/ * ’ aut hent i cat i on_quer i es. sql ’ - Per f or mes t he gi ven ’ Aut hent i cat i on’ * /
/ * Quer i es. * /
/ * by Andy Rei t z (r ei t z@ces. cwr u. edu) * /
/ * Dat e: 12/ 10/ 98 * /
/ * /

/ *
 * Aut hent i cat i on Quer y 1 (Fi nd t he r ecor d f or par t i cul ar user i d)
 * /
SELECT *
FROM Aut hent i cat i on
WHERE user i d = ’ j ekmf 0’ ;

/ *
 * Aut hent i cat i on Quer y 2 (Fi nd al l of t he user s t hat have an uni t i al i zed
 * passwor d)
 * /
SELECT A. user i d, A. name
FROM Aut hent i cat i on A
WHERE l ogi n = ’ c l ear t ext t empass1’
 OR pap = ’ cl ear t ext t empass1’
 OR chap = ’ c l ear t ext t empass1’
 OR gl obal = ’ c l ear t ext t empass1’ ;

ECES433: Final Project Appendicies December 3, 1998

Appendicies Page 61 of 74 Andy Reitz (reitz@ces.cwru.edu)

/ *
 * Aut hent i cat i on Quer y 3 (Fi nd any admi ni st r at or s t hat have an uni t i al i zed
 * passwor d)
 * /
SELECT A. user i d, A. name
FROM Aut hent i cat i on A
WHERE (A. t ype = ’ admi n’ AND A. l ogi n = ’ c l ear t ext t empass1’) OR
 (A. t ype = ’ admi n’ AND A. pap = ’ c l ear t ext t empass1’) OR
 (A. t ype = ’ admi n’ AND A. chap = ’ cl ear t ext t empass1’) OR
 (A. t ype = ’ admi n’ AND A. gl obal = ’ cl ear t ext t empass1’) ;

/ *
 * Aut hent i cat i on Quer y 4 (Det er mi ne t he number of act ual user s, as wel l as t he
number of
 * act i ve user s)
 * /
SELECT COUNT (*) AS num_user s
FROM Aut hent i cat i on;

SELECT COUNT (A2. user i d) AS act i ve_user s
FROM Aut hent i cat i on A2
WHERE A2. l ogi n <> ’ c l ear t ext t empass1’
 OR A2. pap <> ’ cl ear t ext t empass1’
 OR A2. chap <> ’ c l ear t ext t empass1’
 OR A2. gl obal <> ’ c l ear t ext t empass1’ ;

5�6	6�78�9�:�;�<>=�?�@�A!BDC�7�8!B :'EF@�B :#G(8!H�I�A�7J.:27LK1M'GNAOB%P
DOC> * Aut hent i cat i on Quer y 1 (Fi nd t he r ecor d f or par t i cul ar user i d)
DOC> * /

*** NOTE: The original output to this query was lost. I believe this to be
an accurate reconstruction. ***

USERI D NAME LOGI N MEMBER
CHAP PAP TYPE GLOBAL
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
j ekmf 0 Ti ddl ef l i p, Gr eedo c l ear t ext f G4KbI hk
t empl at e c l ear t ext f G4KbI hk cl ear t ext f G4KbI hk NULL c l ear t ext f G4KbI hk

DOC> * Aut hent i cat i on Quer y 2 (Fi nd al l of t he user s t hat have an uni t i al i zed
passwor d)
DOC> * /

USERI D NAME
- - - - - - - - - - - -
wpznp3 Zebo, Rot o- Root er N
xswbk5 Funt z, Toadst ool D
hsl xe7 Vuei gez, Mussol i ni
j bonl 8 Lumpwump, Sant os
j cr xm11 Lewi s, Bar t l ey
pl i t n12 Qur eshi , Pr of essor
oecpo15 Her der , Fi ps
nxj ct 16 Pr een, Long
f ovyb18 Lest er , Chi ef
qf pcc21 Bat or , Fyvush
gdmdn27 Mer at , Duke
emyl p30 Bl at ch, Domi ni c H
r l ukh31 McGoot er , Ahur a
zxbbd32 Keenan, Chi ef
nj nuj 39 Roxwox, Bi nky

ECES433: Final Project Appendicies December 3, 1998

Appendicies Page 62 of 74 Andy Reitz (reitz@ces.cwru.edu)

cl nt v41 Toot hpast e, Cr owl y
ozbdy46 Hor n, Sascha X
dwknj 48 Toot hpast e, Duke
cbf i o55 Keenan, St ephan
dedt u58 Funt z, Cr unch
l j mdj 62 Pi p, Fr i nk
svj yx65 Br own, Mar c E
r mdbs68 Zabubadoof sk i , Pr of essor
f sxcw72 Or o, Debbi e O
vpj c j 80 Fi nn, Jean- Loui s I
hqj mv81 Rassoodock, I r ene U
ur pkb88 Ri ngwor m, Chewi e
gwbt v92 Mer at , Ebl i s
dqmui 94 Hekkel man, Jean- Loui s U
cr ozz96 Hr umpf , Fl audvi e K
quhr t 99 Goesh, Bout r os- Bout r os
i zbvw101 Twi nki e, Cousi n S
j uzr v104 McGoot er , Buzz G
df zj s106 Papachr i st ou, Chunk
omsbp111 Mi ngus, Pol l y I
i t mok115 Shaughnessy, Chups D
j j szh116 Bol ogna, El mo B
wj oj c117 Wal l op, Hap V
oj r t l 120 Johnson, Rot o- Root er
xohf z124 Toot hpast e, Shi r l ey
f f dwq125 Br own, Lumps D
puqi i 132 St yr of oam, Ral ph
oszbo136 Di l mont , Rodney
l l i f j 138 Esch, Luan
dt ens139 Gapeev, Ner f W
l vyph141 Mazda, Gi l l i gan N
er nun147 Tr i er , But ch
byccq148 Shucker , Li z
mkwuv150 Har l ey, Chunk
nsqyk152 Ri ngwor m, Pol l y
ucupj 154 Pul dup, Maxi mi l i an
i zuyu163 Pul dup, Ger p U
cbhpr 164 McGr oot er , Onni e U
kovyb166 Wi ndex, Cl et us
cj ggr 167 Tabukal l ol i , Gi l l i gan O
umxbd169 Her mf i k, Rot o- Root er
t or bc170 Har asmat ar i , Shampoo X
j pqel 173 Tabukal l ol i , Pam
qmni k182 Br own, Bobo
kycox188 Dent , Li z
yqubs189 Br own, Jean- Loui s
r mf r i 195 Buddha, Fut on
f mbgm196 Tunkl ebi t , Mussol i ni M
cqcbp203 Roxwox, Ebl i s G
buuyv209 Reed, Gor bi n
mi ooc214 Tor val ds, Sancho
t dbqs216 Dannowski , Shampoo
ecvj t 217 Wal l op, El mo
f pvj p220 Kl i nk, Onni e D
hxhcs222 Ni hl en, Ul ek
vf r wb226 Tanenbaum, Fyvush
uyvuo229 Pi p, Fr anci s
r eml d234 Uber , Hap G
got ee254 Pr une, Fi vel
mkl hi 255 Bl at ch, Or ange
cdj qv256 Yummy, Pol l y
xddbx259 Beani e, Jean- Loui s
zkckk263 Cuer vo, Gi l l i gan

ECES433: Final Project Appendicies December 3, 1998

Appendicies Page 63 of 74 Andy Reitz (reitz@ces.cwru.edu)

oecks264 Gouda, Bobo
qugcf 265 Cr umchuck, I l l apot i n
xkt qy270 Ozsoyogl u, Bout r os- Bout r os R
qebuj 272 Tor val ds, Gi l l i gan
qzgzl 275 Lopdop, Li z
sbgt k278 Pi p, Pr of essor G
r j t ph283 Shucker , Luan D
xhnok288 Smee, Mor t on
dhoi m289 Tor val ds, El P
j l mf n292 St yr of oam, Toadst ool
umf i j 294 Bol ogna, Fr i sky
vdebt 298 St r unker , Nogo
hej gs300 Vader , Br ent
yur l j 304 Li pst er , Tex D
t peuk308 Leech, Li nus
vysr o309 Fumbucket , Dar t h
wpyqw310 Qui ggl e, Mar c
t vr gt 312 Di pdi p, Al
bzwf g314 Qur eshi , Fr i nk L
zgoqr 316 Pul s i f er , Gor bi n
xvyt x321 Pal mer , Por ky
ugezy328 Dent , Uwe R
wsdf l 332 Cuer vo, Pol l y R
kmepv333 Shucker , Fut on
sdhj u336 Hon, Kent Havnoovy
ndr up340 Budupadupa, Fyvush E
dsj wo341 Cr umchuck, Thel oni ous
qr kuv342 Shaughnessy, Sar a R
puzj v344 Pr een, Nat ar aj an
bt kvc347 Dent , Mi nga
oxr ks348 St yr of oam, Meep
zf mi v350 Andr eesen, Nogo E
huuxi 352 Hr umpf , Seymor J
uxgen354 Gomper s, Mugwhump F
t ynng356 St r unker , Ner f
wkcf w357 Pal mer , Mar c
i l cqj 358 Hr umpf , Hewl et t B
i pugv363 Ocasi o, Al exei
wwi de366 Rei t z, Fi vel
qi ucm368 Dave, Cousi n
j r nhk369 Pal mer , Maxi mi l i an
nzukm371 Tr i er , Yi t ner T
hpxj b377 Lopdop, Gi l l i gan
zt xzb382 Uber , Luan D
kvkzb383 Yaxmut t , Andy
yoqol 384 Chi l l er , Gor bi n Q
mj qgl 387 Gouda, Br ent
sf pym389 Fi nkel , Cl unky
bgqgc392 Young, Fr i t z F
j j r ed393 Vuei gez, Kr ust y
l xogw398 McGr oot er , Tex
wqr hf 402 Har l ey, Bar t l ey
ngi f z404 Sned, Mi t zencr om
xdcmu410 Bol ogna, Ar af at
owbr b417 Fi nkel , Fut on
dcshv418 Tabukal l ol i , Goomba S
l xzny426 Fer ndi p, Nat ar aj an T
r gxgd427 St or r s, Scoot er P
pxhoj 430 Ni hl en, Rot o- Root er
ur hgj 431 Hekkel man, Shi r l ey
i xvqy432 Smee, Luke U
yzvgf 433 Tanenbaum, Maxi mi l i an
dj cwl 443 Zi pper , Pr of essor R

ECES433: Final Project Appendicies December 3, 1998

Appendicies Page 64 of 74 Andy Reitz (reitz@ces.cwru.edu)

gf nsp445 Hoot enanny, Sant os
xsi ux448 Reed, Pops
mr xoh453 Pul s i f er , Lamar
t mj i q460 Hambone, Luan X
oi hhr 463 Leech, Sar a S
wcqdd473 Cheesenose, Li nus
r ugr b474 Ghal i , Chi ef
whzed481 Lewi s, Buck
ej kqh486 Yada, Gor bi n U
dkbss488 Ozsoyogl u, Fyvush O
j wr j f 491 Beani e, Lamar
ur syr 492 Packar d, Ebl i s J
gsbsk499 Shaughnessy, Mugwhump H

154 r ows sel ect ed.

DOC> * Aut hent i cat i on Quer y 3 (Fi nd any admi ni st r at or s t hat have an uni t i al i zed
passwor d)
DOC> * /

USERI D NAME
- - - - - - - - - - - -
oecpo15 Her der , Fi ps
vpj c j 80 Fi nn, Jean- Loui s I
j uzr v104 McGoot er , Buzz G
f f dwq125 Br own, Lumps D
byccq148 Shucker , Li z
yqubs189 Br own, Jean- Loui s
dhoi m289 Tor val ds, El P
xvyt x321 Pal mer , Por ky
ndr up340 Budupadupa, Fyvush E
qr kuv342 Shaughnessy, Sar a R
huuxi 352 Hr umpf , Seymor J
gf nsp445 Hoot enanny, Sant os

12 r ows sel ect ed.

DOC> * Aut hent i cat i on Quer y 4 (Det er mi ne t he number of act ual user s, as wel l as
t he number of
DOC> * act i ve user s)
DOC> * /

NUM_USERS
- - - - - - - - -
 500

ACTI VE_USERS
- - - - - - - - - - - -
 346

Q�R	R�ST�U�V�W�XZY�[�\�]!^D_�`(a.V#b�\�^%V'`(T!c�d�]+Sa.V'Sfe1g2e�d�h�i
/ * /
/ * ECES 433, Fi nal Desi gn Pr oj ect * /
/ * ’ aut hor i zat i on_quer i es. sql ’ - Per f or mes t he gi ven ’ Aut hor i zat i on’ * /
/ * Quer i es. * /
/ * by Andy Rei t z (r ei t z@ces. cwr u. edu) * /
/ * Dat e: 12/ 10/ 98 * /
/ * /

/ *
 * Aut hor i zat i on Quer y 5 (Fi nd t he r ecor d f or a gi ven user i d)

ECES433: Final Project Appendicies December 3, 1998

Appendicies Page 65 of 74 Andy Reitz (reitz@ces.cwru.edu)

 * /
SELECT *
FROM Aut hor i zat i on
WHERE user i d = ’ j ekmf 0’ ;

/ *
 * Aut hor i zat i on Quer y 6 (Fi nd t he user s how have st r i ct secur i t y set t i ngs)
 * /
SELECT user i d
FROM Aut hor i zat i on
WHERE i nacl I S NOT NULL AND out acl I S NOT NULL
 AND r out i ng = ’ FALSE’ ;

/ *
 * Aut hor i zat i on Quer y 7 (Fi nd t he user s t hat have st r i c t t i meout s)
 * /
SELECT user i d
FROM Aut hor i zat i on
WHERE t i meout <= 3600;

/ *
 * Aut hor i zat i on Quer y 8 (Fi nd t he admi ni st r at or s t hat have per mi ssi ve
 * secur i t y set t i ngs)
 * /
SELECT Z. user i d, A. name
FROM Aut hor i zat i on Z, Aut hent i cat i on A
WHERE A. user i d = Z. user i d
 AND A. t ype = ’ admi n’
 AND (Z. i nacl I S NULL
 OR Z. out acl I S NULL
 OR Z. r out i ng = ’ TRUE’) ;

/ *
 * Aut hor i zat i on Quer y 9 (Fi nd t he ’ wor st ’ admi ni st r at or s [t hose f r om
 * Quer i es 8 and 4])
 * /
SELECT Z. user i d, A. name
FROM Aut hor i zat i on Z, Aut hent i cat i on A
WHERE A. user i d = Z. user i d
 AND A. t ype = ’ admi n’
 AND (Z. i nacl I S NULL
 OR Z. out acl I S NULL
 OR Z. r out i ng = ’ TRUE’)
I NTERSECT
SELECT A. user i d, A. name
FROM Aut hent i cat i on A
WHERE (A. t ype = ’ admi n’ AND A. l ogi n = ’ c l ear t ext t empass1’) OR
 (A. t ype = ’ admi n’ AND A. pap = ’ c l ear t ext t empass1’) OR
 (A. t ype = ’ admi n’ AND A. chap = ’ cl ear t ext t empass1’) OR
 (A. t ype = ’ admi n’ AND A. gl obal = ’ cl ear t ext t empass1’) ;

j�k	k�lm�n�o�prqts�u�v(w!x%y�z({.o'|Fv�x o'zNm!}�~�wLl{.o'lL�1�'z�w!x��

DOC> * Aut hor i zat i on Quer y 5 (Fi nd t he r ecor d f or a gi ven user i d)
DOC> * /

*** NOTE: The original output to this query was lost. I believe this to be
an accurate reconstruction. ***

USERI D I NACL OUTACL TI MEOUT I DLETI ME ADDR ROUTI NG ROUTE
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- -

ECES433: Final Project Appendicies December 3, 1998

Appendicies Page 66 of 74 Andy Reitz (reitz@ces.cwru.edu)

j ekmf 0 11 242 NULL NULL NULL TRUE
10. 120. 152. 0 255. 255. 255. 0 10. 120. 152. 251

DOC> * Aut hor i zat i on Quer y 6 (Fi nd t he user s how have st r i ct secur i t y set t i ngs)
DOC> * /

USERI D
- - - - - - - - - - -
cr j gq2
wpznp3
f hhr y4
hsl xe7
i guzr 10
pl i t n12
oecpo15
nxj ct 16
f ovyb18
ui f uk19
qf pcc21
hpshb22
zj zvh23
gdmdn27
emyl p30
oqhor 36
zei zm37
per zy38
nquxl 40
cj ekx54
zxl zc56
ej nxs57
dedt u58
gcdi d61
scohp66
wvr ed69
f sxcw72
vpj c j 80
hhcsc84
eobyf 85
i zbvw101
j uzr v104
ovwbo105
zi gvq109
smqr r 114
yr det 119
oj r t l 120
ol sye123
npi cx131
pgvkv134
i ngps135
oszbo136
dt ens139
mr gxb142
pmr f q146
nsqyk152
ucupj 154
wkzkl 162
i zuyu163
cbhpr 164
umxbd169
zhmoc171
wumyj 177
j uewo181
or mzt 198

ECES433: Final Project Appendicies December 3, 1998

Appendicies Page 67 of 74 Andy Reitz (reitz@ces.cwru.edu)

yql kd199
whj t v202
sqvxk208
buuyv209
l qwnm211
mi ooc214
xf j ej 219
f pvj p220
nsmgx228
uyvuo229
oi hqv232
i zsvs238
ei csv245
vkgku246
gej hz260
l f edu262
r j t ph283
qesng290
wepgf 291
vi i nv293
zcvds302
yol pq305
i qzoq307
vysr o309
zgoqr 316
l cduq330
wsdf l 332
kmepv333
nhuet 339
qr kuv342
pgoqn345
ur gzq353
i l cqj 358
ql ygb359
zdxvg360
i pugv363
mqi i c364
oobi v367
i k j yw370
zexxp372
r j puv374
uf l j g378
mj qgl 387
sf pym389
hkvt p394
uscss396
l gj qi 403
mwnt k405
xqpxl 406
xdcmu410
bpt by416
cxnsn421
pr yeg423
r gxgd427
i xvqy432
yl j xh438
dkvhr 440
dxpj v444
coyew446
unwj b447
qj l hu450
dhmcy456
yi gi u461

ECES433: Final Project Appendicies December 3, 1998

Appendicies Page 68 of 74 Andy Reitz (reitz@ces.cwru.edu)

f mqzg462
mvl vs464
oknj j 472
pef vg475
yhwl u477
ewsvm479
l yt vz480
cf duh484
ef gbq487
j cst y493
obwj c496
eywsw497
gsbsk499

131 r ows sel ect ed.

DOC> * Aut hor i zat i on Quer y 7 (Fi nd t he user s t hat have st r i c t t i meout s)
DOC> * /

USERI D
- - - - - - - - - - -
pl i t n12

DOC> * Aut hor i zat i on Quer y 8 (Fi nd t he admi ni st r at or s t hat have per mi ssi ve
secur i t y set t i ngs)
DOC> * /

USERI D NAME
- - - - - - - - - - - -
nwxhb13 Ocasi o, Lumps
oewf c43 Monk, Ri ngo X
i z i f t 44 Gr oeni ng, Bar t l ey L
mwnxr 53 Li pst er , Fl audvi e K
j ohko64 Cr ups, Zonker K
qxi mm102 Pr une, The
r ccwm107 Tanenbaum, Long G
scqnk113 Pyt t e, Amanda
bj i x i 121 Yada, Nadge V
f f dwq125 Br own, Lumps D
dj enj 143 Zabubadoof sk i , Bout r os- Bout r os
byccq148 Shucker , Li z
vt l s t 158 Hon, El mo
emj br 186 Yokel , Hap
yqubs189 Br own, Jean- Loui s
pzur d201 Pucket t , Er asmus
r qqf o210 Far go, Shi r l ey U
chf sv221 Pr een, Li nus T
ysvby239 Dar as, Andr ew
xr phm253 Headr oom, I r ene Z
zymr u287 McGr i f f , Paul
dhoi m289 Tor val ds, El P
pyymk320 Ri ngwor m, I van F
xvyt x321 Pal mer , Por ky
f pbml 325 Dent , Seymor
pyesn331 Br own, Fedbo
i wxt p334 McGr oot er , Meep I
ndr up340 Budupadupa, Fyvush E
huuxi 352 Hr umpf , Seymor J
vzpmr 375 Fi nn, Cl et us G
xnl cw390 Cr ups, Mi nga
mxmym407 Pul dup, Cousi n S
zl ecz429 Tor val ds, Debbi e V
t vhor 434 Wang, Lanf r i ed K

ECES433: Final Project Appendicies December 3, 1998

Appendicies Page 69 of 74 Andy Reitz (reitz@ces.cwru.edu)

kscmg442 Tunkl ebi t , Chups
gf nsp445 Hoot enanny, Sant os
zdj no452 McGee, Al exei
v j or s458 Lopdop, Mussol i ni R
xf zxc494 Vader , Goof bal l

39 r ows sel ect ed.

DOC> * Aut hor i zat i on Quer y 9 (Fi nd t he ’ wor st ’ admi ni st r at or s [t hose f r om
Quer i es 8 and 4])
DOC> * /

USERI D NAME
- - - - - - - - - - - -
byccq148 Shucker , Li z
dhoi m289 Tor val ds, El P
f f dwq125 Br own, Lumps D
gf nsp445 Hoot enanny, Sant os
huuxi 352 Hr umpf , Seymor J
ndr up340 Budupadupa, Fyvush E
xvyt x321 Pal mer , Por ky
yqubs189 Br own, Jean- Loui s

8 r ows sel ect ed.

���	������������������L�F���N���!� �����Z�����+���.�#���1�2�������
/ * /
/ * ECES 433, Fi nal Desi gn Pr oj ect * /
/ * ’ account i ng_quer i es. sql ’ - Per f or mes t he gi ven ’ Account i ng’ Quer i es. * /
/ * by Andy Rei t z (r ei t z@ces. cwr u. edu) * /
/ * Dat e: 12/ 10/ 98 * /
/ * /

/ *
 * Account i ng Quer y 10 (Fi nd t he user s t hat ar e cur r ent l y l ogged i nt o a
 * gi ven NAS)
 * /
SELECT A. user i d, A. name, C. st ar t _t i me, C. st op_t i me
FROM Aut hent i cat i on A, Cal l s_Compl et ed C
WHERE A. user i d = C. user i d
 AND C. st op_t i me > ’ 08- Dec- 1998 07: 00: 00’
 AND C. NAS_host name = ’ I L_as2516’
UNI ON
SELECT R. user i d, R. NasUser Name, R. l og_dat e, TO_DATE(NULL)
FROM Raw_Account i ng R
WHERE R. t ype = ’ START’
 AND l og_dat e < ’ 08- Dec- 1998 07: 00: 00’
 AND R. NAS_host name = ’ I L_as2516’ ;

/ *
 * Account i ng Quer y 11 (Fi nd t he l ast l ogi ns f or a gi ven t i me per i od, i n
 * r ever se or der)
 * /
SELECT C. user i d, A. name, C. NAS_host name, C. NAS_por t , C. st ar t _t i me
FROM Cal l s_Compl et ed C, Aut hent i cat i on A
WHERE C. st ar t _t i me >= ’ 07- Dec- 1998 12: 00: 00’
 AND C. st ar t _t i me < ’ 08- Dec- 1998 23: 59: 59’
 AND C. user i d = A. user i d
ORDER BY C. st ar t _t i me DESC;

/ *
 * Account i ng Quer y 12 (Fi nd ’ mal f or med’ l ogf i l e ent r i es)

ECES433: Final Project Appendicies December 3, 1998

Appendicies Page 70 of 74 Andy Reitz (reitz@ces.cwru.edu)

 * /
SELECT user i d, NasUser Name, NAS_host name, NAS_por t , t ype
FROM Raw_Account i ng
WHERE t ype = ’ STOP’ ;

/ *
 * Account i ng Quer y 13 (Fi nd t he usage hi st or y f or each user , f or a gi ven
 * t i me per i od.)
 * /
SELECT A. name, C. user i d, C. dur at i on, C. st ar t _t i me, C. NAS_host name, C. NAS_por t
FROM Cal l s_Compl et ed C, Aut hent i cat i on A
WHERE C. user i d = A. user i d
 AND C. st ar t _t i me >= ’ 07- Dec- 1998 12: 00: 00’
 AND C. st ar t _t i me < ’ 08- Dec- 1998 23: 59: 59’
GROUP BY C. user i d, A. name, C. dur at i on, C. st ar t _t i me, C. NAS_host name,
C. NAS_por t ;

���	����� �¡�¢¤£F¥�¦�§L¨�¨F©(ª�!« ¡¬�+Z®�¯�ªL�°.¡'��±!²'©(ª!«%³
DOC> * Account i ng Quer y 10 (Fi nd t he user s t hat ar e cur r ent l y l ogged i nt o a
gi ven NAS)
DOC> * /

USERI D NAME START_TI ME
STOP_TI ME
- - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - -
bt l ee243 Di l mont , Tex 08- DEC- 1998 03: 43: 53 08-
DEC- 1998 23: 17: 55
bwdun17 Her mf i k, Dar t h 07- DEC- 1998 21: 38: 01
cl nt v41 Toot hpast e, Cr owl y 07- DEC- 1998 20: 16: 33
f l bsg33 Gomper s, Shampoo N 08- DEC- 1998 01: 59: 00
f ovyb18 Lest er , Chi ef 07- DEC- 1998 20: 14: 28
gdmdn27 Mer at , Duke 07- DEC- 1998 18: 00: 58
i f bsq74 Bat or , Nat ar aj an F 08- DEC- 1998 02: 36: 36 08-
DEC- 1998 22: 00: 53
j bonl 8 Lumpwump, Sant os 07- DEC- 1998 19: 07: 16
j cr xm11 Lewi s, Bar t l ey 07- DEC- 1998 23: 37: 19
j ekmf 0 Ti ddl ef l i p, Gr eedo 08- DEC- 1998 02: 13: 58
l dvi f 6 Di pdi p, Luke R 07- DEC- 1998 23: 39: 44
nquxl 40 Wal l op, Or ange M 07- DEC- 1998 18: 28: 53
nui xz399 Dent , Ri ngo 08- DEC- 1998 03: 47: 12 08-
DEC- 1998 23: 07: 27
per zy38 Gassee, Toadst ool 08- DEC- 1998 03: 21: 07
pl i t n12 Qur eshi , Pr of essor 08- DEC- 1998 03: 31: 37 08-
DEC- 1998 23: 24: 15
r l ukh31 McGoot er , Ahur a 08- DEC- 1998 03: 01: 42
r ucwe25 Cr umchuck, Meep 07- DEC- 1998 20: 22: 08
vpj c j 80 Fi nn, Jean- Loui s I 08- DEC- 1998 03: 09: 28 08-
DEC- 1998 22: 00: 34
vzvt t 49 Yokel , Mi nga J 07- DEC- 1998 20: 59: 39
wpznp3 Zebo, Rot o- Root er N 07- DEC- 1998 18: 24: 29
wupdv165 Yummy, Li z 08- DEC- 1998 02: 54: 26 08-
DEC- 1998 22: 01: 17
yypt m159 Bavar i an, Goof bal l 08- DEC- 1998 02: 57: 19 08-
DEC- 1998 22: 08: 36
zei zm37 Hr umpf , Pam C 07- DEC- 1998 20: 35: 41
zj zvh23 Kagy, Fedbo 08- DEC- 1998 00: 01: 42

24 r ows sel ect ed.

DOC> * Account i ng Quer y 11 (Fi nd t he l ast l ogi ns f or a gi ven t i me per i od, i n
r ever se or der)

ECES433: Final Project Appendicies December 3, 1998

Appendicies Page 71 of 74 Andy Reitz (reitz@ces.cwru.edu)

DOC> * /

USERI D NAME NAS_HOSTNAM NAS_PORT
START_TI ME
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - -
ndr up340 Budupadupa, Fyvush E I L_as2516 2516_Async_24
08- DEC- 1998 01: 59: 56
owt ht 315 Leech, Sant os OH_as5200 5200_Async_15
08- DEC- 1998 01: 59: 51
bj xcw319 Young, Bar t l ey OH_as5200 5200_Async_132
08- DEC- 1998 01: 59: 15
zyeod9 Bat ur , Ben O OH_as5200 5200_Async_43
08- DEC- 1998 01: 57: 09
f pbml 325 Dent , Seymor OH_as5200 5200_Async_132
08- DEC- 1998 01: 56: 53
emj br 186 Yokel , Hap OH_as5200 5200_Async_177
08- DEC- 1998 01: 56: 47
nwxhb13 Ocasi o, Lumps I L_as2516 2516_Async_28
08- DEC- 1998 01: 56: 38
pxquv26 Lewi s, Chaz L OH_as5200 5200_Async_121
08- DEC- 1998 01: 56: 33
oqhor 36 Br oom, Rot o- Root er N OH_as5200 5200_Async_216
08- DEC- 1998 01: 56: 28
nsmgx228 Rabi ni wi t z i n, I r ene I L_as2516 2516_Async_12
08- DEC- 1998 01: 56: 10
hpshb22 Bol ogna, Er ni e T OH_as5200 5200_Async_64
08- DEC- 1998 01: 55: 56
i xvqy432 Smee, Luke U I L_as2516 2516_Async_7
08- DEC- 1998 01: 54: 49
hf mgm250 Er nst , Bar t l ey I L_as2516 2516_Async_14
08- DEC- 1998 01: 54: 46
t ynng356 St r unker , Ner f OH_as5200 5200_Async_76
08- DEC- 1998 01: 54: 32
cyyj v126 Godse, Rot o- Root er I L_as2516 2516_Async_19
08- DEC- 1998 01: 54: 29
sbgt k278 Pi p, Pr of essor G I L_as2516 2516_Async_20
08- DEC- 1998 01: 54: 29
qxi mm102 Pr une, The I L_as2516 2516_Async_0
08- DEC- 1998 01: 54: 28
cl xnh365 Tunkl ebi t , Homer OH_as5200 5200_Async_45
08- DEC- 1998 01: 54: 00
cl nt v41 Toot hpast e, Cr owl y OH_as5200 5200_Async_44
08- DEC- 1998 01: 53: 58
pyymk320 Ri ngwor m, I van F I L_as2516 2516_Async_26
08- DEC- 1998 01: 53: 46
pxhoj 430 Ni hl en, Rot o- Root er OH_as5200 5200_Async_174
08- DEC- 1998 01: 53: 15
wkpyu179 Or o, I l l apot i n J I L_as2516 2516_Async_23
08- DEC- 1998 01: 52: 58
gdmdn27 Mer at , Duke I L_as2516 2516_Async_9
08- DEC- 1998 01: 52: 57
coyew446 Hor n, Lanf r i ed I L_as2516 2516_Async_0
08- DEC- 1998 01: 52: 45
f j yl c118 Tor val ds, Bi nky OH_as5200 5200_Async_200
08- DEC- 1998 01: 52: 36
pshwz86 Duggan, Ul an Z OH_as5200 5200_Async_59
08- DEC- 1998 01: 51: 57
i zuyu163 Pul dup, Ger p U I L_as2516 2516_Async_4
08- DEC- 1998 01: 51: 54
t or bc170 Har asmat ar i , Shampoo X OH_as5200 5200_Async_90
08- DEC- 1998 01: 51: 38

ECES433: Final Project Appendicies December 3, 1998

Appendicies Page 72 of 74 Andy Reitz (reitz@ces.cwru.edu)

...

...

The rest of this output has been removed from the printed version, due to
length. The full text can be found on the electronic submission media.

...

...

254 r ows sel ect ed.

DOC> * Account i ng Quer y 12 (Fi nd ’ mal f or med’ l ogf i l e ent r i es)
DOC> * /

USERI D NASUSERNAME NAS_HOSTNAM NAS_PORT
TYPE
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - -
gx l zq1 Gouda, Gi l ber t N OH_as5200 5200_Async_108
STOP
cr j gq2 Nut t er , Pops OH_as5200 5200_Async_0
STOP
f hhr y4 Hool oo, Li z OH_as5200 5200_Async_176
STOP
xswbk5 Funt z, Toadst ool D OH_as5200 5200_Async_225
STOP
hsl xe7 Vuei gez, Mussol i ni I L_as2516 2516_Async_21
STOP
zyeod9 Bat ur , Ben O I L_as2516 2516_Async_14
STOP
i guzr 10 Pup, Fr eep W I L_as2516 2516_Async_11
STOP
pl i t n12 Qur eshi , Pr of essor I L_as2516 2516_Async_31
STOP
nwxhb13 Ocasi o, Lumps I L_as2516 2516_Async_21
STOP
qsdyc14 Fumbucket , Buck I L_as2516 2516_Async_25
STOP
ui f uk19 Vader , Cl unky I L_as2516 2516_Async_9
STOP
mzvgt 20 Chi l l er , Fi vel I L_as2516 2516_Async_24
STOP
qf pcc21 Bat or , Fyvush I L_as2516 2516_Async_27
STOP
pxquv26 Lewi s, Chaz L I L_as2516 2516_Async_29
STOP
t qj nv28 Hor n, Fr i nk G OH_as5200 5200_Async_56
STOP
emyl p30 Bl at ch, Domi ni c H OH_as5200 5200_Async_38
STOP
sgr xo35 Goesh, Tr yf on I OH_as5200 5200_Async_102
STOP
oqhor 36 Br oom, Rot o- Root er N I L_as2516 2516_Async_29
STOP
kkygo42 Nef f , Cr unch I L_as2516 2516_Async_3
STOP
dwknj 48 Toot hpast e, Duke OH_as5200 5200_Async_135
STOP

20 r ows sel ect ed.

DOC> * Account i ng Quer y 13 (Fi nd t he usage hi st or y f or each user , f or a gi ven
t i me per i od.)

ECES433: Final Project Appendicies December 3, 1998

Appendicies Page 73 of 74 Andy Reitz (reitz@ces.cwru.edu)

DOC> * /

NAME USERI D DURATI ON START_TI ME
NAS_HOSTNAM NAS_PORT
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Wang, Geezy bbwwg266 0 07- DEC- 1998
22: 07: 52 OH_as5200 5200_Async_98
Cuer vo, Nogo J bci eu449 0 07- DEC- 1998
23: 02: 36 OH_as5200 5200_Async_37
Cuer vo, Nogo J bci eu449 0 07- DEC- 1998
23: 55: 42 OH_as5200 5200_Async_244
Cuer vo, Nogo J bci eu449 0 08- DEC- 1998
00: 55: 54 OH_as5200 5200_Async_116
Cuer vo, Nogo J bci eu449 0 08- DEC- 1998
03: 08: 29 OH_as5200 5200_Async_156
Cuer vo, Nogo J bci eu449 1 08- DEC- 1998
02: 14: 33 OH_as5200 5200_Async_179
Nef f , Long bdqi r 75 0 07- DEC- 1998
19: 51: 10 OH_as5200 5200_Async_160
Nef f , Long bdqi r 75 0 07- DEC- 1998
21: 31: 00 OH_as5200 5200_Async_159
Nef f , Long bdqi r 75 0 07- DEC- 1998
22: 12: 19 OH_as5200 5200_Async_33
Nef f , Long bdqi r 75 1 07- DEC- 1998
17: 57: 29 OH_as5200 5200_Async_50
Nef f , Long bdqi r 75 1 07- DEC- 1998
21: 16: 35 OH_as5200 5200_Async_239
Young, Fr i t z F bgqgc392 0 08- DEC- 1998
01: 13: 38 I L_as2516 2516_Async_13
Young, Fr i t z F bgqgc392 0 08- DEC- 1998
02: 29: 08 I L_as2516 2516_Async_26
Young, Fr i t z F bgqgc392 1 08- DEC- 1998
01: 12: 32 I L_as2516 2516_Async_14
Young, Fr i t z F bgqgc392 1 08- DEC- 1998
01: 22: 39 I L_as2516 2516_Async_4
Young, Fr i t z F bgqgc392 1 08- DEC- 1998
03: 03: 44 I L_as2516 2516_Async_27
Yada, Nadge V bj i x i 121 1 07- DEC- 1998
23: 01: 36 I L_as2516 2516_Async_6
Young, Bar t l ey bj xcw319 0 07- DEC- 1998
18: 21: 28 OH_as5200 5200_Async_23
Young, Bar t l ey bj xcw319 0 07- DEC- 1998
20: 01: 31 OH_as5200 5200_Async_29
Young, Bar t l ey bj xcw319 0 07- DEC- 1998
23: 56: 25 OH_as5200 5200_Async_3
Young, Bar t l ey bj xcw319 0 08- DEC- 1998
00: 10: 35 OH_as5200 5200_Async_155
Young, Bar t l ey bj xcw319 1 07- DEC- 1998
21: 20: 43 OH_as5200 5200_Async_22
Young, Bar t l ey bj xcw319 1 08- DEC- 1998
01: 27: 06 OH_as5200 5200_Async_190
Young, Bar t l ey bj xcw319 1 08- DEC- 1998
01: 32: 08 OH_as5200 5200_Async_80
Young, Bar t l ey bj xcw319 1 08- DEC- 1998
01: 59: 15 OH_as5200 5200_Async_132
Headr oom, Ri pper bpt by416 0 07- DEC- 1998
19: 21: 54 OH_as5200 5200_Async_39
Headr oom, Ri pper bpt by416 0 07- DEC- 1998
19: 51: 11 OH_as5200 5200_Async_154
Headr oom, Ri pper bpt by416 0 07- DEC- 1998
23: 32: 02 OH_as5200 5200_Async_249

ECES433: Final Project Appendicies December 3, 1998

Appendicies Page 74 of 74 Andy Reitz (reitz@ces.cwru.edu)

Headr oom, Ri pper bpt by416 0 07- DEC- 1998
23: 45: 11 OH_as5200 5200_Async_243

...

...

The rest of this output has been removed from the printed version, due to
length. The full text can be found on the electronic submission media.

...

...

2170 r ows sel ect ed.

1 A PRI is an acronym that stands for “Primary Rate Interface” . A PRI is basically a bundle of 23 telephone
lines that share a common phone number. When a user dials the phone number, the telephone system will
select a free one, and pipe it into the NAS. It is further possible to segregate the PRI, giving it multiple
phone numbers. In this case, the NAS will log what number was actually called.
2 CHAP stands for the Challenge-Handshake Authentication Protocol, and implements a three-way
handshake between the client and the NAS, in order to ensure a secure authentication exchange.
3 VPDN is an acronym, short for “ Virtual Private Data Network” . This technology allows the private LAN
to be extended securly and seamlessly across the WAN, to the remote client.
4 Oracle is currently running a rather impressive challenge that implies that their database is the top
performer in today’s market. Reference: http://www.oracle.com/challenge/.

