
ECES 338 Assignment #7 Due: April 9, 1999
Spring 99, Ozsoyoglu, G., 100 points

In this assignment, you will implement the Printer Daemon Problem (from Assignment 4, Ques-
tion #3) using SOLARIS remote procedure calls (RPCs). Assume that four user processes run on dif-
ferent "client" machines. And, the "server" machine provides allocation/deallocation services for three
printers by executing the procedures "GetPrinter" and "ReleasePrinter", called by RPCs.

Create four concurrently running user (client) processes, each running on a different machine. A
user process is in a loop "Compute-RequestAPrinter-ReleaseThePrinter": occasionally, requesting the
allocation of a printer (e.g., the GetPrinter RPC), waiting and getting a printer allocated, and later
releasing the printer (e.g., the ReleasePrinter RPC). The user processes have no priorities, and are ser-
viced on a first-come-first-serve basis.

Test your program with a long run (making sure that you have cases in which all four user
processes request a printer at about the same time), script and turn in the output as well as your source
code. Make sure that you start the server (that runs procedures GetPrinter and ReleasePrinter) before
starting the clients (i.e., the user processes). The user processes should print their actions with the
machine name and the time attached.

There are three programs you have to write.
1) Definition of the RPC protocol in the application.x file (say, PrDmn.x).
2) The service program in application.s.c file (say, server.c). This program contains the actual

procedure(s) to be invoked by the server dispatch routine in the compiler-generated stub. Please
note that you can define and use several remote procedures to be called with RPCs using a sin-
gle pair of client/server stubs.

3) Four different versions of the client program application.c.c file (say, client1.c, client2.c,
client3.c, and client4.c). The client code should create a server handle, the attachment to the
appropriate remote services of servers. In SOLARIS, this attachment is performed by the
clnt_create system call.

Application development with RPCGEN: The protocol definition file PrDmn.x is first processed
by RPCGEN (by issuing the command "RPCGEN PrDmn.x"), the RPC stub generation compiler.
RPCGEN generates:

a) XDR wrapper routines in PrDmn_xdr.c (which are bidirectional filters used by both the client
and the server),

b) the associated common "#include"s in PrDmn.h,
c) client stub in PrDmn_clnt.c,
d) server stub in PrDmn_svc.c. Please note that the server stub has a main. Thus, the remote pro-

cedure that you define in server.c should not have a main since it will be linked with the server
stub.

The Protocol Definition Language: This is the language used for automated stub generation. The
code will be stored in the PrDmn.x protocol definition file. Here is an example of a program
definition:

program APPLICATION_PROGRAM { /* Can specify multiple servers */



- 2 -

version APPLICATION_VERSION {
struct output-parameter1 REMOTE-PROCEDURE1 (input-parameter1) = 1;

} = 1; /* RPC program version number (used for bookkeeping) */
} =0x20fff100 /* program number (used for bookkeeping) */

Please note that the client RPC call must have as the last parameter the server handle (created by the
clnt_create system call) as a call-by-reference parameter. This parameter is only used by client and
server stubs, not by the application. Also, all remote procedures should have the suffix _1 (as the ver-
sion number) in their names.

At the Client: A client is required to maintain a unique structure (pointed to by a server handle) for
each client/server connection. And, the "#include"s that you need to use in, say, client1.c are
<rpc/rpc.h> and "PrDmn.h".

The RPC system calls that you need to use are clnt_create (you should use the UDP protocol (as
opposed to TCP) in the specification) and clnt_pcreateerror and clnt_destroy.

At the Server: The server procedures that you write will be in server.c . The "#include" that you
need to use in server.c is "PrDmn.h".

To compile and run RPCGEN: You can compile the protocol definition with the following com-
mand:

% rpcgen PrDmn.x
Then, RPCGEN produces a client stub, PrDmn_clnt.c, and a server stub, PrDmn_svc.c. It also produces
any necessary XDR filters and a header file to be included by client and server applications and stubs.
In this example, one XDR filter, PrDmn_xdr.c, and the header file, PrDmn.h, are generated.

You can compile the client code for, say, client1 and link it with the client stub and the XDR
filter generated by RPCGEN using the command
% cc -o client1 client1.c PrDmn_clnt.c PrDmn_xdr.c -lnsl
You can compile the server code and link it with the server stub and the XDR filter generated by
RPCGEN using the command
% cc -o server PrDmn_svc.c PrDmn_xdr.c server.c -lnsl

To start remote processes: You can login to five different machines, and start (first) the server,
and (then) the four clients. Or, you can use the remote shell command to start the server and the
clients. A shell script to launch the server on the remote host cerne is

rsh -n cerne server &

Note: The RPC coverage in the Unix textbook, recitations and the class, together with man pages of
the UNIX OS, should be sufficient for this assignment. Also, the book "Power Programming with
RPCs" by J. Bloomer, O’Reilly & Associates, 1991 is an excellent source on RPCs, and has extensive
RPC examples.


