ECES 338: Section 1 Recitation March 21, 1999

Assignment 6:

Programming a UNIX Shell
Recitation for ECES 338
March 22, 1999

Overview of this assignment

The purpose of this assignment is to write a simplistic (yet decently-featured)
UNIX shell. The assignment itself is very detailed, and maps out the functionality that
you need to provide. Furthermore, the assignment contains helpful advice on how to
achieve this functionality.

In essence, ashell is aprogram that takes a specified input (a command), and then
uses fork() and exec() in order to execute this command. Upon completion, it will prompt
the user for another command. Additionally, the shell allows for file redirection, and for
pipes to be setup between commands. You will have to implement these sorts of
functionsinto your shell.

= About “parser.c’
This C file contains al of the functionality necessary in order to parse a
command given to your shell. It is available from the following URLSs:

= ftp://erciyes.ces.cwu. edu/ 338/ parser.c
= http://hone. cwu. edu/ ~aj r 9/ eces338/ source/ parser.c

The use of this file is fairly well documented in the assignment — simply
#i ncl ude it in your source code, and make a call to the par secnd() function,
as specified. You should not need to modify any of the code in this file, but
the assignment does not explicitly state that you are to leave it aone.
Therefore, if you do modify thisfile, there had better be aflaming note of this
fact accompanying your assignment, so that the TA knows what is going on...

= Moreabout piping and redirection
For redirection, all you have to do is f open() the given filename, and then
reconnect it to st di n (or st dout) as necessary. This reconnection process is
done viathe dup2() system call, which is documented on pages 126 — 129 of
the Monkey Book. In order to handle pipes, you may want to use the popen()
system call. This call is documented (with anice example) on pages 131 — 132
in the Monkey Book.

The execvp() system call

Pages 62 and 63 in the Monkey Book document this system call fairly decently.
There is aso an example presented on the bottom of the first page of the assignment,
which explicitly lays out how to use this function. Basically, the first argument is the

Introduction to Operating Systems Page 1 of 2 Andy Reitz (ajr9@po.cwru.edu)

ECES 338: Section 1 Recitation March 21, 1999

name of the file to execute, and the second argument is alist of parameters to send to this
executable. The parser that is provided handles the details of constructing this second
parameter, so that al you have to do is pass the proper datato execvp(), and watch it go
to work.

The struct cnd structure

The parser code includes arather beefy structure, upon which it places the guts of
the string that it dissects. | am going to give a brief overview of this structure, since it is
vital to the understanding of this assignment.

struct cnd {

char *cndnane; /* ptr to '\0" termnated string containing comand */
/* NULL if there is no command */
char *argv[10]; /* ptr’'s to up to 10 argunents for this comand */
/* if there are i args, argv[i] is NULL */
char *infile; /* NULL if no redirected input, else ptr to filenanme */
char *outfile; /* NULL if no redirected output, else ptr to filenane */
int pipe; /* ==YES neans there IS a pipe after this conmmand. */
} commands[MAXCMDS]; /* If there are i commands on the input command */
/* line then command[j].cndnane==NULL for all j>=i */

= Thecndnane variableis ssimply the name of the file to be executed.

= For thear gv member, it isimportant to note that the last element in the list will be
aNULL character. Thisisimportant because execvp() will not work without it.

= |finfileisnot NULL, then fopen() it in read-only mode, and make it take over
the st di n resource of child process.

= |f outfile isnot NULL, the fopen() it in write-only mode, and make it take
over the st dout resource of the child process.

= The pipe variable will be set to either YES or NO, depending on if a pipe existsin
the given command. Based upon this value, your program can decideif it needsto
setup a pipe between the commands returned by par secnd() .

The sort command

Don’'t worry to much about the sort command. It has a lengthy man page, and if
you are interested, you can feel free to exercise it for al that it is worth. However, |
recommend that you just stick to the example presented in the assignment.

Testing your shell

Don't limit your testing to the commands listed in the assignment. Those
commands are only there as a guide. Y our shell should be able handle decently complex
Input strings, so long as it doesn't violate the capabilities of the par secnd() function.

Introduction to Operating Systems Page 2 of 2 Andy Reitz (ajr9@po.cwru.edu)

