
ECES 338: Section 1 Recitation March 1, 1999

Introduction to Operating Systems Page 1 of 3 Andy Reitz (ajr9@po.cwru.edu)

Before The Test:
Exam 1 Preparation and Signals

Recitation for ECES 338
March 1, 1999

The Bakery Algorithm Revisited
In class, Tekin presented the Bakery Algorithm, with an eye towards preparing for the
exam. The text of the algorithm follows:

repeat
choosi ng[i] : = t r ue;
number [i] : = max (number [0] , number [1] , . . . , number [n - 1]) + 1;
choosi ng[i] : = f al se;

for j : = 0 to n - 1
do begin

while choosi ng[j] do no- op;
while number [j] <> 0

and (number [j] , j) < (number [i] , i) do no- op;
end;

critical section

number [i] : = 0;

remainder section

until f al se;

Now, the question (as it could appear on the test), is what happens to the algorithm if the
first while loop is removed?

To answer this question (or any question of this type), it’s best to think of an example that
demonstrates that something breaks (It’s usually pretty safe to assume that algorithms
don’t include non-essential code). So then, consider this example:

Time: Action:
1 P0 executes the max() function, adds 1 (total of 1), but doesn’ t assign this

value to its array (it is suspended by the scheduler).
2 P1 executes the max() function, adds 1 (total of 1 – remember, P0 hasn’ t

assigned it’ s value yet), and does assign the value.
3 P1 continues execution, and eventually enters the critical section.
4 P0 resumes execution, assigns it’s number value, and proceeds into the f or

loop.

ECES 338: Section 1 Recitation March 1, 1999

Introduction to Operating Systems Page 2 of 3 Andy Reitz (ajr9@po.cwru.edu)

5 When j is zero, number [0] will be 1, thus evaluating to true. The final
expression, (number [0] , 0) < (number [0] , 0) will be false, so the for
loop will proceed to when j equals 1.

6 At j = 1, number [1] will be 1, so the first part of the while loop will
evaluate to true. Then, the second part of the while will be evaluated. The
expression (number [1] , 1) < (number [0] , 0) will be false, because 1

== 1, but 1 is not greater than 0. So, P0 will enter the critical section even
though P1 is still in it.

Signals
� Signals are asynchronous event messages that can be used to notify a process that

something has occurred. These are akin to hardware interrupts, only they occur in
software. All system signals (as defined in <sys/ si gnal . h>) have a default behavior.
Thus, if you do nothing, your program will adhere to this default behavior. The
default behaviors are explained in section 5 of the manual page for si gnal . It is also
possible to setup your process so that it ignores all signals (with the exception of
SI GSTOP and SI GKI LL), so that processing can continue uninterrupted. Finally, you
can catch a signal, so that special interrupt-handling code (of your own design) can be
executed whenever the specified signal is received.

� It is important to note that you are not required to use signals in your programs.
Using signals in your programs will be considered to be a form of error-handling,
which can give you back points that you have lost in other areas. Thus, using signals
(as well as per r or) is highly recommended.

� i nt k i l l (pi d_t pi d, i nt s i g)
� You can send a signal to a process by using the ki l l () system call. This system

call is very straightforward – you simply give it a process ID, and an integer
signal to send. You can play with the value of pi d, in order to send the signal to
more than one process at a time. This function will return 0 if successful, or –1 if
an error occurred.

� voi d (* si gnal (i nt s i g, voi d (* di sp) (i nt))) (i nt)
� In order to catch (or ignore) a signal, the si gnal () system call must be used. In

essence, this function will hook-up the reception of a certain signal to a function
that you define. So, whenever a signal of the given type is received, your program
will automatically execute the code in your function. The function prototype for
si gnal () is rather confusing, but all you need to know is that the first parameter
should be a signal, and the second should be a pointer to a function.

Example:
si gnal (SI GI NT, si gi nt _handl er) ; / * Ct r l - C * /

Typically, this call will be located near the top of your mai n() function, so that
the specified signal will be re-routed as early as possible. Furthermore, after this
function is called, your program will now execute the function

ECES 338: Section 1 Recitation March 1, 1999

Introduction to Operating Systems Page 3 of 3 Andy Reitz (ajr9@po.cwru.edu)

si gi nt _handl er () whenever a Cont r ol - C character is input from the terminal.
Here is an example of a signal handling function:

voi d si gi nt _handl er (i nt i ncomi ng_si gnal)
{
 f pr i nt f (st der r , “ SI GI NT r ecei ved, exi t i ng. \ n”) ;
 f f l ush (NULL) ; / * Fl ush al l buf f er ed I / O. * /

 / * Remove any semaphor es/ shar ed memor y/ et c. * /
 / * Cl ean- up any gl obal open f i l ehandl es, et c. * /

 exi t (0) ;
} / * End si gi nt _handl er () . * /

In this example function, a message will be printed to st der r , and then various
clean-up operations will be implemented, before the exi t () call is made. If you
wish to simply ignore a signal, then you don’t need to call exi t () .

