
ECES 338: Section 1 Recitation February 22, 1999

Introduction to Operating Systems Page 1 of 5 Andy Reitz (ajr9@po.cwru.edu)

Assignments 4 and 5:
Monitors, Semaphores, and Shared Memory

Recitation for ECES 338
February 22, 1999

Additional Notes About Monitors
In Assignment #4, you are asked to complete three different synchronization

problems, using Monitors. Monitors are covered in the Dinosaur book, on pages 181
through 189. Unfortunately, I don’ t feel that Sliberschatz and Galvin provide the best
explanation possible, so I am going to elaborate a bit upon what they have written. Tekin
has a book that you may borrow, entitled “Concurrent Programming: Principles and
Practice” by Gregory Andrews. It provides a more thorough evaluation of Monitors
(although their syntax is at times somewhat weird). I’ve looked through their material,
and going to provide the highlights here:

� Monitors are program modules similar to critical regions, with several key
differences. A monitor is like an object, in that it contains local variables and
functions. The local variables are shared throughout all instances of the given
monitor, but may only be accessed by the functions within the monitor.
Furthermore, all functions within the monitor operate in a mutually-exclusive
manner. Thus, only one process can be active within the monitor at time.

� However, further synchronization might be necessary, which is why condition
variables have been provided. To quote Andrews: “A condition variable is used
to delay a process that cannot safely continue executing until the monitor’s state
satisfies some boolean condition. It is also used to awaken a delayed process
when the condition becomes true” (Andrews, 266). As described in the Dinosaur
text, the signal and wait operations are supported on condition variables.
However, Andrews enlightens us to several differences that exist between
condition variables and semaphores:

� “Signal has no effect if no process is delayed on the condition variable; the
fact that it was executed is not remembered” (Andrews, 267).

� “Wait always delays a process until a later signal is executed” (Andrews,
267).

� “Third, the process executing signal always executes (at least in the monitor)
before a process awakened as a result of the signal” (Andrews, 267).

� Finally, on page 183, the Dinosaur text describes an inherent conflict between
condition variables and the mutual-exclusive nature of the monitor. Basically, a
problem occurs once a condition is signaled – if the waiting processes awakens
immediately, then two processes would be operating concurrently in the monitor.

ECES 338: Section 1 Recitation February 22, 1999

Introduction to Operating Systems Page 2 of 5 Andy Reitz (ajr9@po.cwru.edu)

There are many different ways to solve this problem – choose one, and state
choice in your assumptions.

Semaphores
• int semget (key_t key, int nsems, int semflg)

� This function allocates an array of system-wide semaphores. The key parameter is
used by semget() in order to allocate a unique identifier for the set of
semaphores. Using this same key in subsequent calls to semget() will allow
other processes to use the same set of semaphores. The nsems parameter specifies
the number of semaphores to allocate. Finally, the semflg parameter specifies the
permissions that the new set of semaphores should have after creation. The flags
are documented in the “ Monkey book” .

Example:
key_t key;
int semid;

semid = semget (key, 3, IPC_CREAT | IPC_EXCL | 0600);
if (semid == -1)
 {
 perror ("Semget() | Process x");
 exit (50);
 }

This call to semget() will create an array of three semaphores. The IPC_CREAT
flag will cause semget() to create the semaphores if they do not already exist.
The IPC_EXCL flag will cause semget() to fail if the value specified in key
already exists. Thus, these two flags will ensure that an “ entirely new” set of
semaphores is created. The final part of the flag is the permission bits. A
successful call will return a semaphore identifier, which you will need to use later
on in further semaphore operations.

• key_t ftok(const char *path, int id)
� Use the ftok() function in order to generate a key for any of the IPC functions.

You don’ t really need to understand how this function works, and it is fine to just
use the exact same call that the book uses.

• int semctl (int semid, int semnum, int cmd, /* union semun arg */)
� This function implements a variety of operations on a set of semaphores. This first

parameter is an identifier (which you saved from your call to semget(), right?).
The second parameter is a number, which represents the number of semaphores in
the set upon which to carry out the given operation. Finally, the third parameter
specifies a command. Depending upon this command, further parameters may be
needed. In general, this function can be used in order to access the internal data
that accompanies UNIX System V semaphores (as described in the semget()
section of the “Monkey book”), or to carry out specific operations on the set of
semaphores. It is important to note that the definition for the semun union IS

ECES 338: Section 1 Recitation February 22, 1999

Introduction to Operating Systems Page 3 of 5 Andy Reitz (ajr9@po.cwru.edu)

NOT included in the Solaris header files. This means that in order to commands
that require this data structure, you must define it in yourself as follows:

union semun {
 int val;
 struct semid_ds *buf;
 ushort *array;
 };

Now, there are really only two different operations that you will need to use for
your programming assignments. The first one, SETALL, is used to initialize your
semaphores. The second command, IPC_RMID, is used to remove your set of
semaphores from the system. I will present an example of each command.

Example of SETALL:
ushort start_val[3]; /* Initial values for Semaphore. */
union semun ctl_arg; /* Argument union for semctl(). */

start_val[0] = 1;
start_val[1] = 1;
start_val[2] = 0;
ctl_arg.array = start_val; /* Set address of array */
 /* in the semun union. */

if (semctl (semid, 0, SETALL, ctl_arg) == -1)
 {
 perror ("Semctl | Process x");
 exit (51);
 }

This example is fairly straight-forward, with a few exceptions. Firstly, it is very
important that your array of values (to be used to initialize your semaphores) be of
type ushort. The proper values will not be set if you use any other type. Finally,
the nsem parameter to semctl() can be set to zero, so that all of the semaphores
in the array are initialized. If you only want to initialize a subset of your
semaphores (starting from the first one), I believe that you can specify this
behavior by putting a non-zero value in for this parameter.

Example of IPC_RMID:
if (semctl (semid, 0, IPC_RMID, 0) == -1)
 {
 perror ("Semctl | Process x");
 exit (52);
 }

• int semop (int semid, struct sembuf *sops, size_t nsops)
	 Finally, we come to the function that allows the basic wait and signal operations

to be performed on a set of semaphores. Unfortunately, UNIX System V
semaphores are very generalized, so this function is rather cumbersome to use. All
access to a semaphore is done via a sembuf structure. In general, operations that
decrement a semaphore attempt to gain access to a resource (wait). Operations
that increment a semaphore attempt to release access to a resource (signal). In

ECES 338: Section 1 Recitation February 22, 1999

Introduction to Operating Systems Page 4 of 5 Andy Reitz (ajr9@po.cwru.edu)

order to facilitate these operations, the book defines the following instances of the
sembuf structure:

struct sembuf acquire = {0, -1, SEM_UNDO},
 release = {0, 1, SEM_UNDO};

Using these variables in order to implement wait (acquire) and signal (release)
is fairly easy. I will present two examples, demonstrating both operations.

Example of “ Wait” :
acquire.sem_num = 0;
if (semop (semid, &acquire, 1) == -1)
 {
 perror ("Semop | Process x | Acquire resource 0");
 exit (53);
 }

Example of “ Signal” :
release.sem_num = 0;
if (semop (semid, &release, 1) == -1)
 {
 perror ("Semop | Process x | Release resource 0");
 exit (54);
 }

These examples demonstrate how the ugliness of semop() can be abstracted to
some extent. You may also find it useful to create wait() and signal()
functions, in order to reduce this complexity (and code reuse) even further.

Shared Memory
In general, once you implement semaphores, the functions necessary in order to

implement shared memory will seem very easy. I will present a brief overview of these
functions in the following section.

• int shmget (key_t key, int size, int shmflg)

 This function is practically identical to semget(). Basically, you give shmget() a

key value, a size, and the requisite flags, and it will allocate said number of
bytes in the system. It will return an identifier to this area of memory, that you
will need to save for use with other system calls.

• int shmctl (int shmid, int cmd, struct shmid_ds *buf)
� Again, this function is used to carry out a variety of operations on a given shared

memory segment. The only command that you will need for your assignment is
IPC_RMID, which removes the shared memory segment from the system.

• int shmat (int shmid, void *shmaddr, int shmflg)
� This function is unique to shared memory. Basically, once a shared memory

region has been created, each process that wishes to use the shared memory must
first attach to it. Whereas with semaphores this attachment could be facilitated
through the semget() system call, in shared memory the shmat() system call

ECES 338: Section 1 Recitation February 22, 1999

Introduction to Operating Systems Page 5 of 5 Andy Reitz (ajr9@po.cwru.edu)

must be used instead. The first parameter is the identifier for the shared memory
region, and the other two parameters control how the process attaches the shared
area of memory to its address space. It is always best to leave these two
parameters as zero.

Example:
int *shrd_var; /* Affords local access to the shared */
 /* memory region. */

if ((shrd_var = (int *) shmat (shmid, 0, 0)) == (int *) -1)
 {
 perror ("Shmat | Process x");
 exit (3);
 }

• int shmdt (void *shmaddr)
 This function detaches a process from a shared memory region. It is fairly simple

to use – the only parameter is the variable that you wish to detach.

Example:
shmdt ((void *)shrd_var);

