
ECES 338: Section 1 Recitation February 15, 1999

Introduction to Operating Systems Page 1 of 2 Andy Reitz (ajr9@po.cwru.edu)

Assignment 3: Semaphores
Recitation for ECES 338

February 15, 1999

I. Introductory Stuff
A. Assignment #1 has been graded – see your T.A.

B. Clean-up Machines – When coding with multiple processes, it is imperative
that you clean-up after yourself.

C. Midterm will focus on Concurrent Programming (Chapter 6 from the
Dinosaur text).

1. I’ ll try and be less vague in the next recitation…

II. Semaphores
D. This explained fairly well in the Dinosaur text, but in essence, a semaphore is

essentially a variable that can be operated on atomically, to ensure that
processes have sole access to a specific set of code.

E. There are two operations intrinsic to semaphores:
1. Wait (P) – blocks until the semaphore is zero, and then decrements the

semaphore by one.
2. Signal (V) – increments the semaphore by one.

F. From these two constructs, it is possible to construct some very elaborate
concurrency-control hierarchies, as the text demonstrates.

III. Deadlock and Starvation (6.4.3)
G. There is a whole chapter (Chapter 7) in the Dinosaur text about what a

deadlock is, and how to avoid it.
1. Basically, a deadlock occurs when you have at least two processes that

cannot continue, because they are both waiting for the other process to
accomplish some task.
(i) There is a very lucid example of deadlock in the Dinosaur text, on

page 171.
2. I’m not sure how the grader is going to deal with this in your

assignments. I would tell you to work very hard to eliminate any
possibility of deadlock in the algorithms that you submit.
(ii) Try simulating a run through your algorithm (on paper), varying

the order in which processes are scheduled to run, etc.

H. As to starvation, I’m not so sure that you have to worry about this for
Assignment #3.

1. If I change my mind, I’ ll post this information to my website.

ECES 338: Section 1 Recitation February 15, 1999

Introduction to Operating Systems Page 2 of 2 Andy Reitz (ajr9@po.cwru.edu)

IV. Shared Memory
I. Without going into much detail, shared memory allows you to declare

variables that can be “ shared” among several processes.
1. Thus, it would be possible to update a counter variable in one process,

and allow another process to have instant access to that information.

J. For the purposes of this assignment, you should explicitly state which of your
variables are to be shared among which processes.

V. Hints ‘n Kinks for Assignment #3:
K. Problem #1:

1. Although it is ambiguous, I think that you should assume that your
answer should work for multiple car processes. If this changes, I will
post it to my website.

2. Furthermore, I believe that it’s fully possible to implement this
problem using only four semaphores and no shared variables.
However, you are allowed to use as many semaphores as you need, as
well as shared variables.

3. The best way to attack this problem (or all of them, for that matter), is
to break down each process into the activities that it must perform, and
think about how the activities can be performed in a concurrent
environment.

L. Problem #2:
1. I’m still a little confused by this problem. Basically, it looks like you

will need to use shared variables for this question.
2. The thing to recognize is that an A-type process should keep a count of

the number of B-type processes that it has seen. This means that it is
possible for two B-type processes to be in the room at separate times,
but still cause an A-type process to exit.

3. As I get questions about this problem, I will post further information to
my website.

M. Problem #3:
1. I had to implement nearly the exact same problem in ECES 423.

(i) The only difference for me was that I had to use threads and a
monitor.

2. While you don’t have to worry about threads, you might want to
consider using a monitor for this problem.
(ii) I haven’t thought-through this fully, but it may make your

algorithm simpler.
(iii) Basically, you break-down each operation, into parts that can be

done concurrently on the list, and parts that need mutual exclusive
access.

