
ECES 338: Section 1 Recitation February 8, 1999

Introduction to Operating Systems Page 1 of 3 Andy Reitz (ajr9@po.cwru.edu)

Assignment 2: Pipes
Recitation for ECES 338

February 8, 1999

Unnamed Pipes
� i nt pi pe (i nt f i l edes[2])

� This function creates two file descriptors, stored in an array. These descriptors are
connected such that writes to the first one will be readable by the second
descriptor, and vice-versa. This function is typically used in a f or k()

environment, as that is the only way to pass the open file descriptors between
processes.

Example:
i nt pdes[2] ;

i f (pi pe (pdes) == - 1)
 {
 f pr i nt f (st der r , " Er r or cr eat i ng pi pe. \ n") ;
 per r or (" Pi pe Cr eat e") ;
 exi t (1) ;
 }

� ssi ze_t r ead (i nt f i l edes, voi d * message, si ze_t num_byt es)
� This function (documented in section two of the manual) reads up to num_byt es

from the given file descriptor, and places the data into the given buffer. It then
returns the number of bytes that it read. If you wish to use variable-length
messages, you can use one of two methods. The first is to just bound the size of
your messages, and rely on r ead() to quit reading when it is done. Alternatively,
you could develop some sort of encoding scheme whereby you first r ead() a
number, which tells you the size of the following message.

Example:
r ead (pdes[0] , consumed_msg, BUFSI ZE)

� ssi ze_t wr i t e (i nt f i l edes, const voi d * message, si ze_t num_byt es)
� This function (documented in section two of the manual) is similar to r ead() , in

that it will write num_byt es from the given buffer into the given file descriptor. If
said file descriptor is busy, or cannot hold the requisite amount of data, wr i t e()

will block. It will return the number of bytes actually written.

Example:
wr i t e (pdes[1] , pr od_msg, st r l en (pr od_msg) + 1)

ECES 338: Section 1 Recitation February 8, 1999

Introduction to Operating Systems Page 2 of 3 Andy Reitz (ajr9@po.cwru.edu)

� cl ose (i nt f i l edes)
� This function simply closes a file descriptor, flushing all of the buffered data

pending.

Named Pipes
� i nt mknod (const char * pat h, mode_t mode, dev_t dev)

	 The pat h should be a fully qualified filename on the filesystem to which you have
write privileges. For named pipes, the mode should be S_I FI FO bitwise-or’d with
the filesystem permissions that you wish for your pipe to have. The dev parameter
should be left zero.

 i nt mkf i f o (const char * pat h, mode_t mode)
� Identical to mknode, except that the mode only needs to specify the filesystem

parameters.

� i nt open (const char * pat h, i nt of l ag)
 This opens a file, which in this case will be a pipe created by either mknod() or

mkf i f o() . The flag parameter specifies if the stream is to be opened for reading,
writing, or both operations.

� i nt unl i nk (const char * pat h)
� This function removes a given filename from the filesystem, similar to r m.

Miscellaneous Functions
� st r l en – calculates the length of a given string, be sure to add one in order to

account for the string terminator.

� spr i nt f – is useful for “building” strings, the pr i nt f way. Basically, instead of
printing to st dout , the output will be written to a buffer, given as the first
parameter.

� memset – a really efficient way to wipe out a given area of memory with some new
constant (usually zero).

Miscellaneous Topics
� The monkey book has a lot of paranoia about deadlock, and the O_NONBLOCK and

O_NDELAY flags. Basically, you can code yourself into situations whereby all (or
some) of your processes deadlock, so that they are all waiting for some event, which
will never occur. For example, the default behavior of the wr i t e() system call is to
block (sleep) if the file descriptor is busy. Thus, if you have two processes attempting
to write to the same file descriptor, neither will ever awake. I don’ t think that you’ ll
have to worry much about this, for this assignment.

� To implement fully, I believe that part one of the latest assignment is going to be the
hardest. I’d suggest that you use relatively simple messages (such as one word), as

ECES 338: Section 1 Recitation February 8, 1999

Introduction to Operating Systems Page 3 of 3 Andy Reitz (ajr9@po.cwru.edu)

that will simplify the file I / O. It will also be much easier if you create a consumer ()

and a pr oducer () function, and pass them values so that they know that they’re C1 or
P2, for example. Also, be sure to call sr and() once in the parent before you call
r and() .

� Part 4 is rather ambiguous. Tekin writes that you should have your parent execl ()

into an l s, but I think that you might want to do it in a child process, so that you can
show multiple directory listings over the course of your run.

� Some hints for this assignment (since I haven’t gotten assignment graded…):
� Be sure to make your code readable. Use a word processor if you have to. Also,

modularity (functions) is going to be a must for this assignment.
� Be sure to comment your code, especially the variables that you use. I also find it

handy to comment the closing “curly braces” , in order to keep track of them.
� Be sure to include details about your compilation environment.
� Be sure to include your output, as readable and detailed as you can make it.
� Be sure to do error checking! Even though it is optional, it can make up for lost

points if the grader doesn’t like what you did elsewhere in your assignment. It’s
as simple as wrapping system calls up in an i f statement, and using the per r or ()

and/or f pr i nt f (st der r , …) functions.
� Finally, be sure to check all of the homepages associated with this course! Also, if

you are at all confused about something, feel free to e-mail your recitation leader,
or come to our office hours. That’s what we’re here for!

