
ECES 338: Section 1 Recitation April 12th, 1999

Introduction to Operating Systems Page 1 of 3 Andy Reitz (ajr9@po.cwru.edu)

Assignment 9 (?):
Using POSIX Threads

Recitation for ECES 338
April 12th, 1999

Overview of Threads (vs. Processes)
+ lighter weight
+ same memory space (no goopy IPC)
+ robust scheduling (if system allows it)
- Confused implementation (user vs. kernel)
- Many variations, worsening implementation.
- Doesn’t support multiprocessor environments as well as processes.
- Cannot exec().

Welcome to POSIX
� The purpose behind POSIX is to define a set of specifications for compatibility

between different UNIX-class operating systems. Thus, code that is written in
order to adhere to the POSIX specifications should be useable on any operating
system that is POSIX compliant. In terms of threads, each operating system has
chosen to implement threads in their own way. However, they all support the
POSIX standard, and have created an environment whereby the POSIX calls can
actually manipulate the system-specific facilities. Therefore, if you learn the
POSIX method, you can write programs for any compatible operating system.

� As a general note, be sure to #define _REENTRANT, and then #include
<pthread.h>.

� Furthermore, although I haven’ t seen the assignment yet, it’s likely that you
shouldn't need to mess with attributes at all.

POSIX Thread Functions
� int pthread_create (pthread_t *new_thread_ID, const pthread_attr_t

*attr, void *(*start_func) (void *), void *arg)
� In general, this function will create a new thread of execution, and execute a given

(presumably) local function in this thread. The first parameter represents a
“ Thread Identifier” . Basically, this is a process-wide unique integer, that
references the newly-created thread. You should simply declare a pthread_t
variable in your program, and pass a reference to this variable to the function call.
The next parameter is a pointer to a pthread attribute structure, which can be used
to modify the thread attributes at creation. Generally, you will want to make this
NULL. The third parameter is a void pointer to a function, that you wish to execute
in a new thread. This function should be coded so that it returns a void pointer,
and accepts a void pointer as a parameter. The fourth (and final) parameter to
pthread_create() is a pointer to an argument that is to be passed to the

ECES 338: Section 1 Recitation April 12th, 1999

Introduction to Operating Systems Page 2 of 3 Andy Reitz (ajr9@po.cwru.edu)

aforementioned function. If you desire more than one argument, you should create
a structure, and pass a pointer to that.

� void pthread_exit (void *status)
� This function simply exits a thread. You can give it a pointer to a variable that

contains the exit status that you wish to pass on to the parent.

� int pthread_join (pthread_t target_thread, void **status)
� Essentially, this is the thread-equivalent of wait(). So, this system call will force

the parent process to wait for the termination of a non-detached thread. The first
parameter should be a “ Thread Identifier” , as obtained in the pthread_create()
system call. The second parameter should be a pointer to a region of memory
suitable in order hold the return status (as specified in pthread_exit()) of the
thread. It should be noted that only one thread of execution can successfully join
with another thread – if multiple threads do so, then the extraneous
pthread_join() attempts will fail. Also, when a non-detached thread exits, it's
process-level resources will remain intact until it is joined, or until the parent-
level process exits.

	 int pthread_detach (pthread_t threadID)

 This system call detaches a thread, such that when it finishes, its resources will be

returned to the system automagically. The only parameter to this function is a
“ Thread Identifier” .

POSIX Mutex Functions
A mutex is conceptually similar to a binary semaphore – except that a value of

zero represents an unlocked (un-owned) state, and a non-zero value represents a locked
(owned) state. It is also strongly recommended that a mutex is only unlocked by its
owner.

For the purposes of this lecture, I will only discuss mutexes that function in an
intra-process threaded environment. Sharing a mutex between several threaded processes
(inter-process model) is a more advanced topic.

Creating a mutex is as simple as declaring a variable in your program, like this:

pthread_mutex_t my_lock1;

Initializing this mutex can be handled by setting it equal to the constant
PTHREAD_MUTEX_INITIALIZER, or via a system call:

� int pthread_mutex_init (pthread_mutex_t *mp, const
pthread_mutexattr_t *attr)

� This function initializes a given mutex with the attributes listed in the second
parameter. If a NULL pointer is given as the second parameter, the mutex will
receive the default attributes – which is probably good enough for the intra-
process environment.

ECES 338: Section 1 Recitation April 12th, 1999

Introduction to Operating Systems Page 3 of 3 Andy Reitz (ajr9@po.cwru.edu)

 int pthread_mutex_lock (pthread_mutex_t *mp)
� This system call attempts to lock a mutex (the equivalent of wait()). If the mutex

is currently unlocked, this call will lock it by taking ownership of the mutex. If
the mutex is already locked, then this system call will cause the calling thread to
block. As an aside, if a thread that owns a mutex issues a second
pthread_mutex_lock() call on the same mutex, then deadlock will result.

� int pthread_mutex_unlock (pthread_mutex_t *mp)
� This system call attempts to unlock a mutex (the equivalent of signal()). In

order to avoid undefined behavior, only the thread that owns a locked mutex
should unlock it.

� int pthread_mutex_trylock (pthread_mutex_t *mp)
� This function is conceptually similar to pthread_mutex_lock(), except that it

will not block the thread if the mutex is locked. Instead, it will return EBUSY (16),
indicating that the mutex is locked. In this manner, a thread can determine the
state of a mutex.

� int pthread_mutex_destroy (pthread_mutex_t *mp)
� This system call removes the reference to a given mutex from the system. Note,

however, that it doesn’ t de-allocate any memory occupied by the mutex variable,
it only removes this mutex from the system tables.

POSIX Condition Variables
All implementations of POSIX threads include an implementation of Condition

Variables. In essence, condition variables are useful in an environment where a thread
has locked a critical section via a mutex, but during the course of the execution of this
critical section, determines that it needs to wait for some other condition to be true.
Therefore, pthread condition variables are the “other” synchronization element – they
allow a synchronization method that interacts with a more global mutex.

In order to make use of a condition variable, it can be declared in a manner that is
similar to a mutex:

pthread_cond_t my_condition = PTHREAD_COND_INITIALIZER;

� int pthread_cond_wait (pthread_cond_t *cond, pthread_mutex_t *mutex)
� This function will cause a calling thread to block if the given condition is not

conducive to continuation. The first parameter is a pointer to a condition variable,
the second parameter is a pointer to a mutex variable. If this function causes the
calling thread to block, it will first release the mutex, and then go to sleep.

� int pthread_cond_signal (ptrhead_cond_t *cond)
� This system call notifies a waiting thread that a given condition variable is ready

for further processing. It will wake up a waiting thread, and atomically regain the
mutex, so that the previously waiting thread can continue processing.

