
ECES 338: Section 1 Recitation April 5, 1999

Introduction to Operating Systems Page 1 of 3 Andy Reitz (ajr9@po.cwru.edu)

Assignment 8:
Using TCP/IP Sockets

Recitation for ECES 338
April 5, 1999

In general, the code surrounding TCP/IP sockets can be somewhat confusing,
because it involves a lot of complex system calls. Once a connection (or more
appropriately, socket) has been established, it acts just like a file, so the more
recognizable read() and write() system calls can be used in order to actually move
data between machines. For the purposes of this lecture, I am going to assume that you
have a “ functional” knowledge of the Internet Protocol (IP). Basically, you should have
some general knowledge of how addressing works, and how the many protocols interact
with one another.

The Monkey Book gives a very detailed description of Sockets. Unfortunately,
their detail can be somewhat overwhelming, because they attempt to cover both UNIX
domain as well as Berkeley-style sockets simultaneously. UNIX domain sockets are
similar to named pipes – the transmission of data occurs through an actual file on the
filesystem. Thus, these sockets are only useful for intra-machine communication.
Berkeley sockets, on the other hand, use TCP/IP as the transmission medium, and are
useful for sending information between computers. Furthermore, these sockets form the
foundation of what is known today as the “Internet” , so they are what I’ ll focus on here.

Basically, today’s lecture is going to focus on connection-oriented sockets, as
discussed on page 278 – 300 of The Monkey Book. Furthermore, I know that you all like
examples, so you should pay particular attention to Programs 10.6 and 10.7 (pages 297
and 298, respectively).

� int socket (int family, int type, int protocol)
� This system call creates a new socket instance. Both clients and servers need to

make use of this system call. This system call returns an open socket descriptor
(like a file descriptor), that is configured as specified by the parameters. The first
parameter specifies the protocol family, which can be either PF_UNIX or PF_INET
(Internet Protocol). The second argument specifies a sub-type for the connection
family. For a connection-oriented session, specify SOCK_STREAM. The third
parameter seems to be depreciated, and is always set to zero.

� int bind (int socket, const struct sockaddr *name, int namelen)
� The connection-based paradigm implies a client/server relationship. As such, only

servers use this system call. In essence, this call associates an address and port
with a given socket. Thus, if your environment affords you with multiple
addresses and/or ports, this call ratchets a specific pair to your socket. The first
parameter is a socket descriptor, as established by a previous call to socket().
The second parameter is a pointer to a pretty heinous structure. The third

ECES 338: Section 1 Recitation April 5, 1999

Introduction to Operating Systems Page 2 of 3 Andy Reitz (ajr9@po.cwru.edu)

parameter is the size of the structure passed as the second parameter. For internet-
style connections (AF_INET), a pointer to the following sockaddr structure should
be supplied:

struct sockaddr_in {
 short sin_family;
 u_short sin_port;
 struct in_addr sin_addr;
 char sin_zero[8];
};

� The sin_family member should be set to the AF_INET constant. The sin_addr
member represents the actual address that should be bound to. Again, there is a lot
of depreciated information lying around here, but the value needs to be stored in
the s_addr member of the in_addr structure. Furthermore, the value stored must
be in the correct endian order, so a special system call needs to be used. Finally,
the sin_port member specifies the port that should be used with the given
socket. Again, the byte order matters, so a special system call must be used.
Consider the following example:

Example:
struct sockaddr_in serv_sa;
serv_sa.sin_family = AF_INET;
serv_sa.sin_addr.s_addr = htonl (INADDR_ANY);
serv_sa.sin_port = htons (7777);
bind (sd, (struct sockaddr *) &serv_sa, sizeof (serv_sa))

This example binds the socket (established in a previous call, and stored in sd) to
port 7777, on all IP addresses in the system. Thus, for a machine that has four IP
addresses, this socket would be present on each address. Finally, some reference
must be made to the special “byte-ordering” functions mentioned earlier. The
function htons() manipulates the endianess of 16-bit wide integers, while
htonl() works with 32-bit wide (long) integers.

� int listen (int socket, int backlog)
� Again, this system call is server-only. It causes the calling process to start

listening for connections on the address/port pair specified by bind(). This
system call actually establishes a queue, so that multiple incoming connections
can be handled in the order received. The first parameter is a socket descriptor,
the second specifies the size of the queue (but may have a system-imposed
maximum). According to the Solaris 2.5.1 manual page, there is currently no limit
imposed upon the listen() queue size.

� int accept (int socket, struct sockaddr *addr, int *addrlen)
� This function call will block (by default) the server process, while it waits for an

incoming connection. When it completes, a connection will have been
established, and it will be up to the server code to handle the client’s request(s).
While not mandatory, it is strongly recommended that you use a loop with
accept(), that forks off a new child to handle each incoming request. The

ECES 338: Section 1 Recitation April 5, 1999

Introduction to Operating Systems Page 3 of 3 Andy Reitz (ajr9@po.cwru.edu)

purpose of this loop is to create a server that can simultaneously handle multiple
client requests. The first parameter is the socket that has had the bind() and
listen() calls already applied to it. The second parameter is a generic sockaddr
pointer, in which accept() will return information for the client whose
connection attempt that it accepted. The third parameter represents the length of
the aforementioned sockaddr structure. Finally, accept() returns a new socket
descriptor, to be used with the newly established client connection. Consider the
following example:

Example:
struct sockaddr_in cli_sa;
size_returned = sizeof (cli_sa);
accept (sd, (struct sockaddr *) &cli_sa, &size_returned);

Basically, this example statically allocates an area of memory (the cli_sa
variable), and calls accept(). Once a connection has been accepted, all of the
relevant client information will be stored in memory, and can be referenced
through the cli_sa variable.

	 int connect (int socket, struct sockaddr *name, int namelength)

 In order to establish a connection to a server, the client must use the connect()

system call. The parameters required by this function are similar to those of the
bind() system call. Basically, for a given socket, an IP address and port need to
be specified. The connect() system call will then connect the remote end of the
local socket to the server.

